Similarity solution for magnetogasdynamic spherical shock wave in a self-gravitating non-ideal radiating gas using lie invariance method

被引:0
作者
Vidit K. Vats
Dheerendra B. Singh
Danish Amin
机构
[1] National Institute of Technology,Department of Mathematics
来源
Journal of Engineering Mathematics | 2023年 / 143卷
关键词
Lie invariance method; Magnetogasdynamics; Non-ideal gas; Self-gravitating; Shock waves; Thermal radiation;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, a mathematical model describing the unsteady adiabatic flow of spherical shock waves in a self-gravitating, non-ideal radiating gas under the influence of an azimuthal magnetic field is formulated and similarity solutions are obtained. The ambient medium is assumed to be at rest with uniform density. The effect of thermal radiation under an optically thin limit is included in the energy equation of the governing system. By applying the Lie invariance method, the system of PDEs governing the flow in the said medium is transformed into a system of non-linear ODEs via similarity variables. All the four possible cases of similarity solution are obtained by selecting different values for the arbitrary constants involved in the generators. Among these four cases, only two possess similarity solutions, one by assuming the power-law shock path and other by exponential-law shock path. The set of non-linear ODEs obtained in the case of the power-law shock path is solved numerically using the Runge–Kutta method of 4th order in the MATLAB software. The effects of variation of various parameters such as non-ideal parameter (b¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\overline{b })$$\end{document}, adiabatic index of the gas (γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\gamma )$$\end{document}, Alfven-Mach number (Ma-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{a}^{-2}$$\end{document}), ambient magnetic field variation index (ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi )$$\end{document}, and gravitational parameter (G0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({G}_{0})$$\end{document} on the flow quantities are discussed in detail and various results are portrayed in the figures. Furthermore, the article includes a detailed comparison made between the solutions obtained for cases with and without gravitational effects in the presence of magnetic field.
引用
收藏
相关论文
共 43 条
  • [1] Hu X(2015)A direct algorithm of one-dimensional optimal system for the group invariant solutions J Math Phys 56 151-158
  • [2] Li Y(1975)An idealised model of a magnetohydrodynamic spherical blast wave applied to a flare produced shock in the solar wind Astronomy Astrophys Sci Res Council 45 110-114
  • [3] Chen Y(2011)Admissible shock waves and shock-induced phase transitions in a van der Waals fluid Phys Fluids 23 59-64
  • [4] Summers D(2021)Discontinuity wave interactions in generalized magnetogasdynamics Acta Astronaut 180 501-543
  • [5] Zhao N(1996)Structure and stability of a spherical implosion Phys Lett A 213 91-97
  • [6] Mentrelli A(1996)Structure and stability of a spherical shock wave in a van der Waals gas Q J Mech Appl Mech 49 1-18
  • [7] Ruggeri T(1976)Self-similar piston problem in non-ideal gas Int J Eng Sci 14 496-14
  • [8] Sugiyama M(2020)Blast waves in a non-ideal self-gravitating gas with magnetic field Eur Phys J Plus 135 478-275
  • [9] Zeidan D(1951)The propagation of shock waves in a stellar model with continuous density distribution Astrophys J 113 1-859
  • [10] Govekar S(1957)Analytic Solutions for the blast-wave problem with an atmosphere of varying density Astrophys J 125 269-23