On weakly prime radical of modules and semi-compatible modules

被引:0
|
作者
M. Behboodi
机构
[1] Department of Mathematical Science,
[2] Isfahan University of Technology,undefined
来源
Acta Mathematica Hungarica | 2006年 / 113卷
关键词
semi-compatible ring; Ore domain; Dedekind domain; Bezout domain; semiprime module; weakly prime module; weakly prime radical;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a left R-module. Then a proper submodule P of M is called weakly prime submodule if for any ideals A and B of R and any submodule N of M such that ABN ⊆ P, we have AN ⊆ P or BN ⊆ P. We define weakly prime radicals of modules and show that for Ore domains, the study of weakly prime radicals of general modules reduces to that of torsion modules. We determine the weakly prime radical of any module over a commutative domain R with dim (R) ≦ 1. Also, we show that over a commutative domain R with dim (R) ≦ 1, every semiprime submodule of any module is an intersection of weakly prime submodules. Localization of a module over a commutative ring preserves the weakly prime property. An R-module M is called semi-compatible if every weakly prime submodule of M is an intersection of prime submodules. Also, a ring R is called semi-compatible if every R-module is semi-compatible. It is shown that any projective module over a commutative ring is semi-compatible and that a commutative Noetherian ring R is semi-compatible if and only if for every prime ideal B of R, the ring R/\B is a Dedekind domain. Finally, we show that if R is a UFD such that the free R-module R⊕ R is a semi-compatible module, then R is a Bezout domain.
引用
收藏
页码:243 / 254
页数:11
相关论文
共 9 条
  • [2] On Weakly Prime and Weakly 2-absorbing Modules over Non-commutative Rings
    Groenewald, Nico J.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 33 - 48
  • [3] Semiprime and weakly compressible modules
    Dehghani, N.
    Vedadi, M. R.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 343 - 353
  • [4] Strongly radical supplemented modules
    E. Büyükaşık
    E. Türkmen
    Ukrainian Mathematical Journal, 2012, 63 (8) : 1306 - 1313
  • [5] Weakly based modules over Dedekind domains
    Hrbek, Michal
    Ruzicka, Pavel
    JOURNAL OF ALGEBRA, 2014, 399 : 251 - 268
  • [6] Weakly second modules over noncommutative rings
    Beyranvand, R.
    Rastgoo, F.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (05): : 1355 - 1365
  • [7] Semi-irreducible Zariski spaces of modules
    Nikseresht, A.
    Azizi, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (08)
  • [8] Regularly weakly based modules over right perfect rings and Dedekind domains
    Michal Hrbek
    Pavel Růžička
    Czechoslovak Mathematical Journal, 2017, 67 : 367 - 377
  • [9] Regularly weakly based modules over right perfect rings and Dedekind domains
    Hrbek, Michal
    Ruzicka, Pavel
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 367 - 377