Geometry of Measures in Random Systems with Complete Connections

被引:0
作者
Eugen Mihailescu
Mariusz Urbański
机构
[1] Institute of Mathematics of the Romanian Academy,Department of Mathematics
[2] University of North Texas,undefined
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Countable iterated function systems with overlaps; Hausdorff dimension; Fractals; Place-dependent probabilities; Stationary measures; Projections of Gibbs measures; Smale endomorphisms; Random systems with complete connections; Transfer operators; 28A80; 37A05; 37D35; 37C45; 37H15; 30C35;
D O I
暂无
中图分类号
学科分类号
摘要
We study new relations between countable iterated function systems (IFS) with overlaps, Smale endomorphisms and random systems with complete connections. We prove that stationary measures for countable conformal IFS with overlaps and place-dependent probabilities, are exact dimensional; moreover we determine their Hausdorff dimension. Next, we construct a family of fractals in the limit set of a countable IFS with overlaps S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S$$\end{document}, and study the dimension for certain measures supported on these subfractals. In particular, we obtain families of measures on these subfractals which are related to the geometry of the system S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S$$\end{document}.
引用
收藏
相关论文
共 51 条
  • [1] Barnsley MF(1985)Iterated function systems and the global construction of fractals Proc. R. Soc. Lond. A 399 243-275
  • [2] Demko S(2011)The chaos game on a general iterated function system Ergodic Theory Dyn. Syst. 31 1073-1079
  • [3] Barnsley MF(1988)Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities Ann. Inst. H. Poincaré 24 367-394
  • [4] Vince A(1937)Sur des chaines a liaisons complétes Bull. Soc. Math. Fr. 65 132-148
  • [5] Barnsley MF(1999)Iterated function system and Ruelle operator J. Math. Anal. Appl. 231 319-344
  • [6] Demko S(2009)Dimension theory of iterated function systems Commun. Pure Appl. Math. 62 1435-1500
  • [7] Elton J(1989)Random systems with complete connections as a framework for fractals Stud. Cerc. Math. 41 481-489
  • [8] Geronimo J(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
  • [9] Doeblin W(1948)Sur certaines chaines a liaisons complétes C. R. Acad. Sci. Paris 227 667-669
  • [10] Fortet R(2002)Iterated function systems with continuous place dependent probabilities Univ. Iagel. Acta Math. 40 137-146