Analysis and Numerical Simulation of a Polymerization Model with Possible Agglomeration Process

被引:0
作者
Léon Matar Tine
Babacar Lèye
机构
[1] Inria Center Grenoble Rhône-Alpes,Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, Dracula Team
[2] International Institute for Water and Environmental Engineering (2iE),undefined
来源
Acta Applicandae Mathematicae | 2019年 / 164卷
关键词
Polymerization process; Hyperbolic-parabolic coupling; Smoluchowski operator; Numerical simulation; Anti-diffusive method; Finite volume method; 58F15; 58F17; 53C35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an analytical and numerical modeling of a general polymerization process with possible lengthening by an agglomeration mechanism. The proposed model takes into account the 2D spatial diffusion of the monomers for the mass transfer between monomers and polymers. We investigate the well-posedness of this general polymerization model and propose an adequate numerical scheme based on a generalization of the anti-dissipative method developed in Goudon (Math. Models Methods Appl. Sci. 23:1177–1215, 2013).
引用
收藏
页码:21 / 48
页数:27
相关论文
共 79 条
  • [1] Dubovskiı̌ P.B.(1996)Existence, uniqueness and mass conservation for the coagulation-fragmentation equation Math. Methods Appl. Sci. 19 571-591
  • [2] Stewart I.W.(1986)The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions Commun. Math. Phys. 104 657-692
  • [3] Ball J.M.(2010)Prion dynamic with size dependency-strain phenomena J. Biol. Dyn. 4 28-42
  • [4] Carr J.(2009)Size distribution dependence of prion aggregates infectivity Math. Biosci. 1 88-99
  • [5] Penrose O.(2003)A numerical study on large-time asymptotics of the Lifshitz-Slyozov system J. Sci. Comput. 18 429-473
  • [6] Calvez V.(1993)The dynamics of transient Ostwald ripening Model. Simul. Mater. Sci. Eng. 1 591-612
  • [7] Lenuzza N.(1999)Lifshitz-Slyozov equations: the model with encounters Transp. Theory Stat. Phys. 28 545-573
  • [8] Doumic M.(2002)Some remarks on the large-time asymptotic of the Lifshitz-Slyozov equations J. Stat. Phys. 108 341-359
  • [9] Deslys J.-P.(2010)On a diffusive version of the Lifschitz-Slyozov-Wagner equation J. Nonlinear Sci. 20 463-521
  • [10] Mouthon F.(1977)Kinetics of Ostwald ripening J. Cryst. Growth 40 279-290