Optimization of Automotive Valve Train Components with Implicit Filtering

被引:0
作者
T. D. Choi
O. J. Eslinger
C. T. Kelley
J. W. David
M. Etheridge
机构
[1] Intelligent Information Systems,Center for Research in Scientific Computation and Department of Mathematics
[2] TICAM,Department and Aerospace Engineering
[3] North Carolina State University,undefined
[4] North Carolina State University,undefined
来源
Optimization and Engineering | 2000年 / 1卷
关键词
noisy optimization; implicit filtering; mechanical systems; automotive valve trains;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show how the implicit filtering algorithm can be applied to problems in parameter identification and optimization from automotive valve train design. We extend our previous work by using a more refined model of the valve train and exploiting parallelism in a different way. We apply the parameter identification results to obtain optimal profiles for camshaft lobes.
引用
收藏
页码:9 / 27
页数:18
相关论文
共 20 条
  • [1] Armijo L.(1966)Minimization of functions having Lipschitz-continuous first partial derivatives Pacific J. Math. 16 1-3
  • [2] Bertsekas D. B.(1976)On the Goldstin-Levitin-Polyak gradient projection method IEEE Trans. Autom. Control 21 174-184
  • [3] Bertsekas D. B.(1982)Projected Newton methods for optimization problems with simple constraint SIAM J. Control Optim. 20 221-246
  • [4] Broyden C. G.(1967)Quasi-Newton methods and their application to function minimization Math. Comp. 21 368-381
  • [5] Broyden C. G.(1969)A new double-rank minimization algorithm AMS Notices 16 670-222
  • [6] Cash J.(1990)A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides ACM transactions an Mathematical Software 16 201-322
  • [7] Karp A.(1970)A new approach to variable metric methods Comput. J. 13 317-285
  • [8] Fletcher R.(1995)An implicit filtering algorithm for optimization of functions with many local minima SIAM J. Optim 5 269-26
  • [9] Gilmore P.(1970)A family of variable metric methods derived by variational means Math. Comp. 24 23-283
  • [10] Kelley C. T.(1980)Finite elements for dynamical analysis of helical rods International Journal of Mechanical Science 22 267-558