Similarity Reductions and Conservation Laws of an Extended Bogoyavlenskii–Kadomtsev–Petviashvili Equation

被引:4
作者
Mabenga C. [1 ]
Muatjetjeja B. [1 ,2 ]
Motsumi T.G. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, University of Botswana, Private Bag 22, Gaborone
[2] Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho
关键词
Bogoyavlenskii–Kadomtsev–Petviashvili equation; Conservation laws; Point symmetries;
D O I
10.1007/s40819-022-01247-y
中图分类号
学科分类号
摘要
In this paper, we construct exact solutions of a (2+1)-dimensional extended Bogoyavlenskii–Kadomtsev–Petviashvili equation. We also examine the conservation laws of the aforementioned equation using the variational approach. A brief physical representation of the derived conserved vectors will be conversed. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
收藏
相关论文
共 14 条
[1]  
Wazwaz A., On integratibility of an extended Bogoyavlenskii-Kadomtsev-Petviashvili equation: multiple soliton solutions, Int. J. Numer. Model El., 2817, pp. 1-8, (2020)
[2]  
Gu C., Hu H., Zhou Z., Darboux Transformation in Soliton Theory and Its Geometric Applications, (2005)
[3]  
Wazwaz A., New (3 + 1) -dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlev e ´ integrability, Phys. Lett. A., 384, pp. 126-787, (2020)
[4]  
Hirota R., The Direct Method in Soliton Theory, (2004)
[5]  
Lu X., Chen S.J., Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms. one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear, 103, pp. 947-977, (2021)
[6]  
Lu X., Chen S.J., New general interaction solutions to the KPI equation via an optional decoupling condition approach, Commun. Nonlinear. Sci. Numer. Simul, 103, (2021)
[7]  
Zhao Z., He L., B a¨ cklund trnsformatiom and Riemann-B a¨ cklund method to a (3+1)-dimensional breaking soliton equation, Eur. Phys. J. Plus, 135, (2020)
[8]  
Sirendaoreji S., Jiong, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A., 309, pp. 387-396, (2003)
[9]  
Bluman G.W., Kumei S., Symmetries and Differential Equations, Applied Mathematical Sciences, 81, (1989)
[10]  
Olver P.J., Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, (1993)