Analytic semigroups generated in L1(Ω) by second order elliptic operators via duality methods

被引:0
作者
L. Angiuli
D. Pallara
F. Paronetto
机构
[1] Università del Salento,Dipartimento di Matematica “Ennio De Giorgi”
[2] Università di Padova,Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
来源
Semigroup Forum | 2010年 / 80卷
关键词
Analytic semigroups; General boundary conditions; Duality methods;
D O I
暂无
中图分类号
学科分类号
摘要
Given an open domain (possibly unbounded) Ω⊂Rn, we prove that uniformly elliptic second order differential operators, under nontangential boundary conditions, generate analytic semigroups in L1(Ω). We use a duality method, and, further, give estimates of first order derivatives for the resolvent and the semigroup, through properties of the generator in Sobolev spaces of negative order.
引用
收藏
页码:255 / 271
页数:16
相关论文
共 20 条
  • [1] Amann H.(1983)Dual semigroups and second order linear elliptic boundary value problems Isr. J. Math. 45 225-254
  • [2] Amann H.(1996)Strongly continuous dual semigroups Ann. Mat. Pura Appl. 171 41-62
  • [3] Escher J.(2009)BV functions and parabolic initial boundary value problems on domains Ann. Mat. Pura Appl. 188 297-311
  • [4] Angiuli L.(1988)Generation of analytic semigroups in the Isr. J. Math. 61 235-255
  • [5] Miranda M.(1991) topology by elliptic operators in Osaka J. Math. 28 367-384
  • [6] Pallara D.(1993)Analytic semigroups generated by elliptic operators in Osaka J. Math. 30 397-429
  • [7] Paronetto F.(1991) and parabolic equations J. Differ. Equ. 94 1-40
  • [8] Cannarsa P.(1960)On elliptic systems in Ann. Math. (2) 72 581-593
  • [9] Vespri V.(1963)Hölder regularity in variational parabolic non-homogeneous equations Am. J. Math. 85 1-13
  • [10] Di Blasio G.(1972)Negative norms and boundary problems Stud. Math. 44 47-60