Generalized System for Relaxed Cocoercive Variational Inequalities and Projection Methods

被引:0
作者
R. U. Verma
机构
[1] University of Toledo,Department of Mathematics
来源
Journal of Optimization Theory and Applications | 2004年 / 121卷
关键词
Relaxed cocoercive nonlinear variational inequalities; projection methods; relaxed cocoercive mappings; cocoercive mappings; convergence of projection methods;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a nonempty closed convex subset of a real Hilbert space H. The approximate solvability of a system of nonlinear variational inequality problems, based on the convergence of projection methods, is discussed as follows: find an element (x*, y*)∈K×K such that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \left\langle {\rho {\rm T}(y^* ,x^* ) + x^* - y^* ,x - x^* } \right\rangle \geqslant 0,{\text{ }}\forall x \in K{\text{ and }}\rho > 0, \hfill \\ \left\langle {\eta {\rm T}(x^* ,y^* ) + y^* - x^* ,x - x^* } \right\rangle \geqslant 0,{\text{ }}\forall x \in K{\text{ and }}\eta > 0, \hfill \\ \end{gathered}$$ \end{document}where T: K×K→H is a nonlinear mapping on K×K.
引用
收藏
页码:203 / 210
页数:7
相关论文
共 15 条
  • [1] Verma R. U.(2001)Projection Methods, Algorithms, and a New System of Nonlinear Variational Inequalities Computers and Mathematics with Applications 41 1025-1031
  • [2] Nie H.(2003)A System of Nonlinear Variational Inequalities Involving Strongly Monotone and Pseudocontractive Mappings Advances in Nonlinear Variational Inequalities 6 91-99
  • [3] Liu Z.(2002)Projection Methods and a New System of Cocoercive Variational Inequality Problems International Journal of Differential Equations and Applications 6 359-367
  • [4] Kim K. H.(1976)Convexity, Monotonicity, and Gradient Processes in Hilbert Spaces Journal of Mathematical Analysis and Applications 53 145-158
  • [5] Kang S. M.(1994)A New Method for a Class of Linear Variational Inequalities Mathematical Programming 66 137-144
  • [6] Verma R. U.(1999)A Class of Quasivariational Inequalities Involving Cocoercive Mappings Advances in Nonlinear Variational Inequalities 2 1-12
  • [7] Dunn J. C.(1999)An Extension of a Class of Nonlinear Quasivariational Inequality Problems based on a Projection Method Mathematical Sciences Research Hotline 3 1-10
  • [8] He B. S.(1998)Variational Inequalities in Locally Convex Hausdorff Topological Vector Spaces Archiv der Mathematik 71 246-248
  • [9] Verma R. U.(1997)Nonlinear Variational and Constrained Hemivariational Inequalities Involving Relaxed Operators Zeitschrift fur Angewandte Mathematik und Mechanik 77 387-391
  • [10] Verma R. U.(1992)Approximation of Fixed Points of Nonexpansive Mappings Archiv der Mathematik 58 486-491