New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems

被引:0
|
作者
R. I. Boţ
S. M. Grad
G. Wanka
机构
[1] Chemnitz University of Technology,Faculty of Mathematics
关键词
Conjugate functions; Fenchel-Lagrange duality; Composed convex optimization problems; Cone constraint qualifications;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new constraint qualification which guarantees strong duality between a cone-constrained convex optimization problem and its Fenchel-Lagrange dual. This result is applied to a convex optimization problem having, for a given nonempty convex cone K, as objective function a K-convex function postcomposed with a K-increasing convex function. For this so-called composed convex optimization problem, we present a strong duality assertion, too, under weaker conditions than the ones considered so far. As an application, we rediscover the formula of the conjugate of a postcomposition with a K-increasing convex function as valid under weaker conditions than usually used in the literature.
引用
收藏
页码:241 / 255
页数:14
相关论文
共 50 条
  • [41] Necessary and Sufficient Constraint Qualification for Surrogate Duality
    Satoshi Suzuki
    Daishi Kuroiwa
    Journal of Optimization Theory and Applications, 2012, 152 : 366 - 377
  • [42] A Lagrange duality approach for multi-composed optimization problems
    Wanka, Gert
    Wilfer, Oleg
    TOP, 2017, 25 (02) : 288 - 313
  • [43] New glimpses on convex infinite optimization duality
    M. A. Goberna
    M. A. López
    M. Volle
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 431 - 450
  • [44] A Lagrange duality approach for multi-composed optimization problems
    Gert Wanka
    Oleg Wilfer
    TOP, 2017, 25 : 288 - 313
  • [45] New glimpses on convex infinite optimization duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 431 - 450
  • [46] Farkas-type results for inequality systems with composed convex functions via conjugate duality
    Bot, Radu Ioan
    Hodrea, Ioan Bogdan
    Wanka, Gert
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) : 316 - 328
  • [47] Convex Inequalities Without Constraint Qualification nor Closedness Condition, and Their Applications in Optimization
    N. Dinh
    M. A. Goberna
    M. A. López
    M. Volle
    Set-Valued and Variational Analysis, 2010, 18 : 423 - 445
  • [48] Convex Inequalities Without Constraint Qualification nor Closedness Condition, and Their Applications in Optimization
    Dinh, N.
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2010, 18 (3-4) : 423 - 445
  • [49] STABLE AND TOTAL FENCHEL DUALITY FOR CONVEX OPTIMIZATION PROBLEMS IN LOCALLY CONVEX SPACES
    Li, Chong
    Fang, Donghui
    Lopez, Genaro
    Lopez, Marco A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) : 1032 - 1051
  • [50] A neurodynamic approach to convex optimization problems with general constraint
    Qin, Sitian
    Liu, Yadong
    Xue, Xiaoping
    Wang, Fuqiang
    NEURAL NETWORKS, 2016, 84 : 113 - 124