Theory of Nonlinear Implicit Fractional Differential Equations

被引:0
|
作者
Kishor D. Kucche
Juan J. Nieto
Venktesh Venktesh
机构
[1] Shivaji University,Department of Mathematics
[2] University of Santiago de Compostela,Department of Mathematical Analysis
[3] King Abdulaziz University,Faculty of Science
关键词
Implicit fractional differential equations; Caputo fractional derivative; Existence and uniqueness; Continuous dependence; -approximate solution; Fixed point theorem; Integral inequality; 26A33; 34A12; 34A08; 39B12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the basic theory of nonlinear implicit fractional differential equations involving Caputo fractional derivative. In particular, we investigate the existence and interval of existence of solutions, uniqueness, continuous dependence of solutions on initial conditions, estimates on solutions and continuous dependence on parameters and functions involved in the equations. Further, we study ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-approximate solution of the implicit fractional differential equations.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [41] Attractivity of implicit differential equations with composite fractional derivative
    Vivek, Devaraj
    Elsayed, Elsayed M.
    Kanagarajan, Kuppusamy
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) : 151 - 158
  • [42] Block implicit Adams methods for fractional differential equations
    Biala, T. A.
    Jator, S. N.
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 365 - 377
  • [43] Implicit fractional differential equations with Φ-Caputo fractional derivative in Banach spaces
    Baitiche, Zidane
    Derbazi, Choukri
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1237 - 1252
  • [44] Implicit fractional differential equations: Existence of a solution revisited
    Celik, Canan
    Develi, Faruk
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5090 - 5097
  • [45] Analysis of implicit differential equations via ψ-fractional derivative
    Harikrishnan, S.
    Elsayed, E. M.
    Kanagarajan, K.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (07) : 1251 - 1262
  • [46] NONLINEAR IMPLICIT GENERALIZED HILFER TYPE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES
    Salim, Abdelkrim
    Benchohra, Mouffak
    Lazreg, Jamal eddine
    N'guerekata, Gaston
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 2234 - 2250
  • [47] Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 467 - 474
  • [48] A NEW CLASS OF SEMI-IMPLICIT METHODS WITH LINEAR COMPLEXITY FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
    Zeng, Fanhai
    Turner, Ian
    Burrage, Kevin
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A2986 - A3011
  • [49] On the theory of nonlinear differential equations
    Horn, J
    MATHEMATISCHE ZEITSCHRIFT, 1918, 1 : 80 - 114
  • [50] On a theory of nonlinear differential equations
    Horn, J
    MATHEMATISCHE ZEITSCHRIFT, 1922, 13 : 263 - 282