In this paper we introduce a new family of icc groups Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma}$$\end{document} which satisfy the following product rigidity phenomenon, discovered in Drimbe et al. (J Reine Angew Math, 2016.
arXiv:1611.02209): all tensor product decompositions of the II1 factor L(Γ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L(\Gamma)}$$\end{document} arise only from the canonical direct product decompositions of the underlying group Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma}$$\end{document}. Our groups are assembled from certain HNN-extensions and amalgamated free products and include many remarkable groups studied throughout mathematics such as graph product groups, poly-amalgam groups, Burger–Mozes groups, Higman group, various integral two-dimensional Cremona groups, etc. As a consequence we obtain several new examples of groups that give rise to prime factors.