A novel carbon/germanium conic structure: theoretical study using density functional theory

被引:0
作者
Moumena Elkebich
Sihem Zaater
Soraya Abtouche
Meziane Brahimi
机构
[1] USTHB,Laboratoire de Physico Chimie Théorique et Chimie Informatique, LPCTCI
来源
Bulletin of Materials Science | 2020年 / 43卷
关键词
DFT; new conic structure; carbon and germanium combination;
D O I
暂无
中图分类号
学科分类号
摘要
Complete optimization without geometry constraints and calculation of electronic properties of novel conic molecules such as CnHnGenHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{n}\hbox {H}_{n}\hbox {Ge}_{n}\hbox {H}_{n}$$\end{document} and CnGenHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{n}\hbox {Ge}_{n}\hbox {H}_{n}$$\end{document}, with n=3-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 3{-}8$$\end{document}, was carried out with density functional theory using B3LYP and PBE1PBE functionals with 6-31+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}G(d, p) and cc-pVTZ basis sets. Calculations of formation energy showed stable and peculiar geometric and electronic properties. All carbon and germanium atoms for CnHnGenHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{n}\hbox {H}_{n}\hbox {Ge}_{n}\hbox {H}_{n}$$\end{document} compounds, which are sp3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {sp}^{\mathrm {3}}$$\end{document}-hybridized, were located in the same plane. This finding contradicts the notions of hybridization known to date. For these new molecular compounds, quantum descriptors such as electrochemical potential (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}), chemical hardness (η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}), electrophilicity index (ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}), dipole moment, energy gap and the shape of the molecular orbital have been calculated in addition to nucleus independent chemical shifts, polarizability and harmonic oscillator model of aromaticity which are important tools for determining the aromaticity of the studied compounds. Thus, the aim of the work is, on the one hand, to propose new stable molecular structures formed of carbon and germanium atoms, and on the other hand, to challenge our understanding of hybridization and aromaticity notion.
引用
收藏
相关论文
共 124 条
[1]  
Kroto HW(1985)undefined Nature 318 162-undefined
[2]  
Heath JR(2009)undefined J. Phys. Chem. Lett. 1 136-undefined
[3]  
O’Brien SC(2018)undefined C. R. Chim. 21 541-undefined
[4]  
Curl RF(1999)undefined J. Phys.: Condens. Matter 11 6129-undefined
[5]  
Smalley RE(2015)undefined J. Phys. Chem. C 119 3802-undefined
[6]  
Mohan V(2014)undefined J. Phys. Chem. C 118 12115-undefined
[7]  
Datta A(2004)undefined J. Electrochem. Soc. 151 A698M-undefined
[8]  
Khajehali Z(1954)undefined Phys. Rev. 96 21-undefined
[9]  
Shamlouei HR(2000)undefined Electrochim. Acta 45 31-undefined
[10]  
Dong J(2016)undefined Appl. Surf. Sci. 389 1-undefined