Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning

被引:0
|
作者
P. Saranya
S. Prabakaran
Rahul Kumar
Eshani Das
机构
[1] SRM Institute of Science and Technology,Department of Computer Science and Engineering
来源
The Visual Computer | 2022年 / 38卷
关键词
Proliferative diabetic retinopathy; Blood vessels; Neovascularization; Vision loss; Pathogenic blood vessels; Dense-net; CNN;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetic retinopathy (DR) is also called diabetic eye disease, which causes damage to the retina due to diabetes mellitus and that leads to blindness when the disease reaches an extreme stage. The medical tests take a lot of procedure, time, and money to test for the proliferative stage of diabetic retinopathy (PDR). Hence to resolve this problem, this model is proposed to detect and identify the proliferative stages of diabetic retinopathy which is also identified by its hallmark feature that is neovascularization. In the proposed system, the paper aims to correctly identify the presence of neovascularization using color fundus images. The presence of neovascularization in an eye is an indication that the eye is affected with proliferative PDR. Neovascularization is the development of new abnormal blood vessels in the retina. Since the occurrence of neovascularization may lead to partial or complete vision loss, timely and accurate prediction is important. The aim of the paper is to propose a method to detect the presence of neovascularization which involves image processing methods such as resizing, green channel filtering, Gaussian filter, and morphology techniques such as erosion and dilation. For classification, the different layers of CNN have been used and modeled together in a VGG-16 net architecture. The model was trained and tested on 2200 images all together from the Kaggle database. The proposed model was tested using DRIVE and STARE data sets, and the accuracy, specificity, sensitivity, precision, F1 score achieved are 0.96, 0.99, 0.95, 0.99, and 0.97, respectively, on DRIVE and 0.95, 0.99, 0.9375, 0.96, and 0.95, respectively, on STARE.
引用
收藏
页码:977 / 992
页数:15
相关论文
共 50 条
  • [1] Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning
    Saranya, P.
    Prabakaran, S.
    Kumar, Rahul
    Das, Eshani
    VISUAL COMPUTER, 2022, 38 (03) : 977 - 992
  • [2] Retinal vessel segmentation to diagnose diabetic retinopathy using fundus images: A survey
    Radha, K.
    Karuna, Yepuganti
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [3] Advanced Deep Learning for Blood Vessel Segmentation in Retinal Fundus Images
    Ngo, Lua
    Han, Jae-Ho
    2017 5TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2017, : 91 - 92
  • [4] Parallel Network - A Deep Learning Approach for Blood Vessel Segmentation in Retinal fundus Images
    Sivapriya, G.
    Gowri, P.
    Praveen, V
    Varshini, Vishnu
    Sanjeevi, S.
    Tharani, B.
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [5] Proliferative Diabetic Retinopathy Classification from Retinal Fundus Images Using Fractal Analysis
    Taris, Gusna Naufal
    Handayani, Astri
    Mengko, Tati Latifah
    Hermanto, Beni Rio
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [6] Diabetic Retinopathy Screening Using Retinal Blood Vessel and Lesions Segmentation A Comparative Study
    Divakar, Megha
    Sau, Paresh Chandra
    Bansal, Atul
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 1153 - 1157
  • [7] Unsupervised multiscale retinal blood vessel segmentation using fundus images
    Upadhyay, Kamini
    Agrawal, Monika
    Vashist, Praveen
    IET IMAGE PROCESSING, 2020, 14 (11) : 2616 - 2625
  • [8] Abnormal Blood Vessels Segmentation for Proliferative Diabetic Retinopathy Screening Using Convolutional Neural Network
    Agarwal, Vasavi
    Sipani, Ridhi
    Saranya, P.
    ADVANCES IN COMPUTING AND DATA SCIENCES, PT I, 2021, 1440 : 162 - 170
  • [9] Deep-learning based system for effective and automatic blood vessel segmentation from Retinal fundus images
    Singh, Law Kumar
    Khanna, Munish
    Thawkar, Shankar
    Singh, Rekha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 6005 - 6049
  • [10] Deep-learning based system for effective and automatic blood vessel segmentation from Retinal fundus images
    Law Kumar Singh
    Munish Khanna
    Shankar Thawkar
    Rekha Singh
    Multimedia Tools and Applications, 2024, 83 : 6005 - 6049