Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning

被引:0
|
作者
P. Saranya
S. Prabakaran
Rahul Kumar
Eshani Das
机构
[1] SRM Institute of Science and Technology,Department of Computer Science and Engineering
来源
The Visual Computer | 2022年 / 38卷
关键词
Proliferative diabetic retinopathy; Blood vessels; Neovascularization; Vision loss; Pathogenic blood vessels; Dense-net; CNN;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetic retinopathy (DR) is also called diabetic eye disease, which causes damage to the retina due to diabetes mellitus and that leads to blindness when the disease reaches an extreme stage. The medical tests take a lot of procedure, time, and money to test for the proliferative stage of diabetic retinopathy (PDR). Hence to resolve this problem, this model is proposed to detect and identify the proliferative stages of diabetic retinopathy which is also identified by its hallmark feature that is neovascularization. In the proposed system, the paper aims to correctly identify the presence of neovascularization using color fundus images. The presence of neovascularization in an eye is an indication that the eye is affected with proliferative PDR. Neovascularization is the development of new abnormal blood vessels in the retina. Since the occurrence of neovascularization may lead to partial or complete vision loss, timely and accurate prediction is important. The aim of the paper is to propose a method to detect the presence of neovascularization which involves image processing methods such as resizing, green channel filtering, Gaussian filter, and morphology techniques such as erosion and dilation. For classification, the different layers of CNN have been used and modeled together in a VGG-16 net architecture. The model was trained and tested on 2200 images all together from the Kaggle database. The proposed model was tested using DRIVE and STARE data sets, and the accuracy, specificity, sensitivity, precision, F1 score achieved are 0.96, 0.99, 0.95, 0.99, and 0.97, respectively, on DRIVE and 0.95, 0.99, 0.9375, 0.96, and 0.95, respectively, on STARE.
引用
收藏
页码:977 / 992
页数:15
相关论文
共 50 条
  • [1] Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning
    Saranya, P.
    Prabakaran, S.
    Kumar, Rahul
    Das, Eshani
    VISUAL COMPUTER, 2022, 38 (03): : 977 - 992
  • [2] Advanced Deep Learning for Blood Vessel Segmentation in Retinal Fundus Images
    Ngo, Lua
    Han, Jae-Ho
    2017 5TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2017, : 91 - 92
  • [3] Retinal vessel segmentation to diagnose diabetic retinopathy using fundus images: A survey
    Radha, K.
    Karuna, Yepuganti
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [4] Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images
    Franklin, S. Wilfred
    Rajan, S. Edward
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2014, 34 (02) : 117 - 124
  • [5] Automated Grading of Diabetic Retinopathy in Retinal Fundus Images using Deep Learning
    Hathwar, Sagar B.
    Srinivasa, Gowri
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2019), 2019, : 73 - 77
  • [6] Suitability Classification of Retinal Fundus Images for Diabetic Retinopathy Using Deep Learning
    Pinedo-Diaz, German
    Ortega-Cisneros, Susana
    Moya-Sanchez, Eduardo Ulises
    Rivera, Jorge
    Mejia-Alvarez, Pedro
    Rodriguez-Navarrete, Francisco J.
    Sanchez, Abraham
    ELECTRONICS, 2022, 11 (16)
  • [7] Parallel Network - A Deep Learning Approach for Blood Vessel Segmentation in Retinal fundus Images
    Sivapriya, G.
    Gowri, P.
    Praveen, V
    Varshini, Vishnu
    Sanjeevi, S.
    Tharani, B.
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [8] RLeU-Net: Segmentation of blood vessels in retinal fundus images for Diabetic Retinopathy Screening
    Addanki S.
    Sumathi D.
    Multimedia Tools and Applications, 2025, 84 (9) : 6113 - 6134
  • [9] Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM
    Jebaseeli, T. Jemima
    Durai, C. Anand Deva
    Peter, J. Dinesh
    OPTIK, 2019, 199
  • [10] Retinal Blood Vessel Segmentation from Depigmented Diabetic Retinopathy Images
    Jebaseeli, T. Jemima
    Durai, C. Anand Deva
    Peter, J. Dinesh
    IETE JOURNAL OF RESEARCH, 2021, 67 (02) : 263 - 280