MRI-based radiomics nomogram for distinguishing solitary fibrous tumor from schwannoma in the orbit: a two-center study

被引:0
作者
Jiliang Ren
Ying Yuan
Meng Qi
Xiaofeng Tao
机构
[1] Shanghai Ninth People’s Hospital,Department of Radiology
[2] Shanghai Jiao Tong University School of Medicine,Department of Radiology
[3] Eye & ENT Hospital,undefined
[4] Fudan University,undefined
来源
European Radiology | 2024年 / 34卷
关键词
Magnetic resonance imaging; Orbit; Artificial intelligence; Schwannoma; Solitary fibrous tumor;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:560 / 568
页数:8
相关论文
共 88 条
  • [1] Westra WH(1994)Solitary fibrous tumor. Consistent CD34 immunoreactivity and occurrence in the orbit Am J Surg Pathol 18 992-998
  • [2] Gerald WL(2020)Orbital solitary fibrous tumors: a multi-centered histopathological and immunohistochemical analysis with radiological description Ann Saudi Med 40 227-233
  • [3] Rosai J(2015)Schwannoma of the orbit Arch Craniofac Surg 16 67-72
  • [4] Alkatan HM(2013)Value of MR imaging in differentiation between solitary fibrous tumor and schwannoma in the orbit AJNR Am J Neuroradiol 34 1067-1071
  • [5] Alsalamah AK(2021)Magnetic resonance imaging of orbital solitary fibrous tumors: radiological-pathological correlation analysis J Belg Soc Radiol 105 14-8110
  • [6] Almizel A(2022)Machine learning-based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study Eur Radiol 32 8099-6942
  • [7] Kim KS(2022)Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study Eur Radiol 32 6933-6964
  • [8] Jung JW(2022)CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors Eur Radiol 32 6953-446
  • [9] Yoon KC(2023)Radiomics-based analysis of CT imaging for the preoperative prediction of invasiveness in pure ground-glass nodule lung adenocarcinomas Insights Imaging 14 24-180
  • [10] Zhang Z(2012)Radiomics: extracting more information from medical images using advanced feature analysis Eur J Cancer 48 441-33