A note on approximate biprojectivity of some semigroup algebras
被引:0
作者:
A. Sahami
论文数: 0引用数: 0
h-index: 0
机构:Ilam University,Department of Mathematics, Faculty of Basic Sciences
A. Sahami
论文数: 引用数:
h-index:
机构:
M. Askari-Sayah
论文数: 引用数:
h-index:
机构:
S. F. Shariati
M. Rostami
论文数: 0引用数: 0
h-index: 0
机构:Ilam University,Department of Mathematics, Faculty of Basic Sciences
M. Rostami
机构:
[1] Ilam University,Department of Mathematics, Faculty of Basic Sciences
[2] Amirkabir University of Technology,Faculty of Mathematics and Computer Science
[3] Amirkabir University of Technology (Tehran Polytechnic),Department of Mathematics and Computer Science
来源:
Semigroup Forum
|
2022年
/
105卷
关键词:
Semigroup algebras;
Approximately biprojective;
Pseudo-contractible;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We characterize approximate biprojectivity of semigroup algebras related to a Clifford semigroup. As an application, we improve (Corollary 2.6 in Essmaili et al., Arch Math (Basel) 97(2):167–177, 2011) and we characterize pseudo-contractibility of the Clifford semigroup algebra. Namely, we show that ℓ1(S)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \ell ^{1}(S) $$\end{document} is pseudo-contractible if and only if the idempotent set E(S) is locally finite, each maximal subgroup Gp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ G_{p} $$\end{document} is finite for every p∈E(S)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p\in E(S) $$\end{document}, and ℓ1(S)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \ell ^{1}(S) $$\end{document} has a central approximate identity.