A note on approximate biprojectivity of some semigroup algebras

被引:0
作者
A. Sahami
M. Askari-Sayah
S. F. Shariati
M. Rostami
机构
[1] Ilam University,Department of Mathematics, Faculty of Basic Sciences
[2] Amirkabir University of Technology,Faculty of Mathematics and Computer Science
[3] Amirkabir University of Technology (Tehran Polytechnic),Department of Mathematics and Computer Science
来源
Semigroup Forum | 2022年 / 105卷
关键词
Semigroup algebras; Approximately biprojective; Pseudo-contractible;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize approximate biprojectivity of semigroup algebras related to a Clifford semigroup. As an application, we improve (Corollary 2.6 in Essmaili et al., Arch Math (Basel) 97(2):167–177, 2011) and we characterize pseudo-contractibility of the Clifford semigroup algebra. Namely, we show that ℓ1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ell ^{1}(S) $$\end{document} is pseudo-contractible if and only if the idempotent set E(S) is locally finite, each maximal subgroup Gp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G_{p} $$\end{document} is finite for every p∈E(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p\in E(S) $$\end{document}, and ℓ1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ell ^{1}(S) $$\end{document} has a central approximate identity.
引用
收藏
页码:570 / 574
页数:4
相关论文
共 23 条
  • [1] Askari-Sayah M(2022)Johnson pseudo-contractibility of certain semigroup algebras. II Semigroup Forum 104 18-27
  • [2] Pourabbas A(2007)Biflatness of Semigroup Forum 75 253-271
  • [3] Sahami A(2010)-semilattice algebras Mem. Am. Math. Soc. 205 165-146
  • [4] Choi Y(1990)Banach algebras on semigroups and on their compactifications Math. Scand. 66 141-177
  • [5] Dales HG(2011)Amenability for discrete convolution semigroup algebras Arch. Math. (Basel) 97 167-123
  • [6] Lau ATM(2007)Pseudo-contractibility and pseudo-amenability of semigroup algebras Math. Proc. Camb. Philos. Soc. 142 111-297
  • [7] Strauss D(2009)Pseudo-amenable and pseudo-contractible Banach algebras Semigroup Forum 79 279-530
  • [8] Duncan J(2009)Amenability constants for semilattice algebras Semigroup Forum 79 515-485
  • [9] Paterson ALT(2016)Biflatness of semigroup algebras Semigroup Forum 92 474-284
  • [10] Essmaili M(2016)Approximate biprojectivity of certain semigroup algebras Colloq. Math. 145 273-3242