Schrödinger Operators with Few Bound States

被引:0
作者
David Damanik
Rowan Killip
Barry Simon
机构
[1] Mathematics 253–37,Department of Mathematics
[2] California Institute of Technology,undefined
[3] University of California,undefined
来源
Communications in Mathematical Physics | 2005年 / 258卷
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Potential Versus;
D O I
暂无
中图分类号
学科分类号
摘要
We show that whole-line Schrödinger operators with finitely many bound states have no embedded singular spectrum. In contradistinction, we show that embedded singular spectrum is possible even when the bound states approach the essential spectrum exponentially fast. We also prove the following result for one- and two-dimensional Schrödinger operators, H, with bounded positive ground states: Given a potential V, if both H±V are bounded from below by the ground-state energy of H, then V≡0.
引用
收藏
页码:741 / 750
页数:9
相关论文
共 22 条
[1]  
Behncke undefined(1991)undefined II. Manuscripta Math. 71 163-undefined
[2]  
Damanik undefined(2003)undefined Commun. Math. Phys. 238 545-undefined
[3]  
Damanik undefined(2003)undefined J. Funct. Anal. 205 357-undefined
[4]  
Damanik undefined(2004)undefined Acta Math. 193 31-undefined
[5]  
Damanik undefined(2000)undefined III. α-continuity. Commun. Math. Phys. 212 191-undefined
[6]  
Gilbert undefined(1989)undefined Proc. Roy. Soc. Edinburgh Sect. A 112 213-undefined
[7]  
Gilbert undefined(1987)undefined J. Math. Anal. Appl. 128 30-undefined
[8]  
Hundertmark undefined(2002)undefined J. Approx. Theory 118 106-undefined
[9]  
Jacobi undefined(1837)undefined J. Reine Angew. Math. 17 68-undefined
[10]  
Jitomirskaya undefined(1999)undefined I. Half-line operators. Acta Math. 183 171-undefined