Lagrangians for Dissipative Nonlinear Oscillators: The Method of Jacobi Last Multiplier

被引:0
作者
M. C. Nucci
K. M. Tamizhmani
机构
[1] Università di Perugia,Dipartimento di Matematica e Informatica
[2] Pondicherry University Kalapet,Department of Mathematics
来源
Journal of Nonlinear Mathematical Physics | 2010年 / 17卷
关键词
Ordinary differential equations; Lie symmetry algebra; Lagrangian; 02.30Hq; 02.20.Sv; 45.20Jj;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobi’s method by applying it to several equations, including a class of equations recently studied by Musielak with his own method [Z. E. Musielak, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients J. Phys. A: Math. Theor.41 (2008) 055205], and in particular a Liènard type nonlinear oscillator and a second-order Riccati equation. Also, we derive more than one Lagrangian for each equation.
引用
收藏
页码:167 / 178
页数:11
相关论文
共 9 条
  • [1] LAGRANGIANS FOR DISSIPATIVE NONLINEAR OSCILLATORS: THE METHOD OF JACOBI LAST MULTIPLIER
    Nucci, M. C.
    Tamizhmani, K. M.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (02) : 167 - 178
  • [2] LAGRANGIANS FOR EQUATIONS OF PAINLEVE TYPE BY MEANS OF THE JACOBI LAST MULTIPLIER
    D'Ambrosi, G.
    Nucci, M. C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 : 61 - 71
  • [3] Lagrangians For Equations of Painlevé Type by Means of The Jacobi Last Multiplier
    G. D’ambrosi
    M. C. Nucci
    Journal of Nonlinear Mathematical Physics, 2009, 16 : 61 - 71
  • [4] λ-symmetries and Jacobi last multiplier
    Nucci, M. C.
    Levi, D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1092 - 1101
  • [5] An Old Method of Jacobi to Find Lagrangians
    M. C. Nucci
    P. G. L. Leach
    Journal of Nonlinear Mathematical Physics, 2009, 16 : 431 - 441
  • [6] AN OLD METHOD OF JACOBI TO FIND LAGRANGIANS
    Nucci, M. C.
    Leach, P. G. L.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (04) : 431 - 441
  • [7] On the Jacobi last multipliers and Lagrangians for a family of Lienard-type equations
    Sinelshchikov, Dmitry I.
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 307 : 257 - 264
  • [8] A general method of fractional dynamics, i.e., fractional Jacobi last multiplier method, and its applications
    Luo, Shao-Kai
    Zhang, Xiao-Tian
    He, Jin-Man
    ACTA MECHANICA, 2017, 228 (01) : 157 - 174
  • [9] On the Jacobi Last Multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painleve-Gambier classification
    Choudhury, A. Ghose
    Guha, Partha
    Khanra, Barun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 651 - 664