The 2-adic complexity of Yu-Gong sequences with interleaved structure and optimal autocorrelation magnitude

被引:0
作者
Yuhua Sun
Tongjiang Yan
Qiuyan Wang
机构
[1] China University of Petroleum,College of Sciences
[2] Tiangong University,School of Computer Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
-sequence; Interleaved sequence; Optimal autocorrelation magnitude; 2-Adic complexity; 11BXX;
D O I
暂无
中图分类号
学科分类号
摘要
In 2008, a class of binary sequences of period N=4(2k-1)(2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=4(2^k-1)(2^k+1)$$\end{document} with optimal autocorrelation magnitude has been presented by Yu and Gong based on an m-sequence, the perfect sequence (0, 1, 1, 1) of period 4 and interleaving technique. In this paper, we study the 2-adic complexity of these sequences. Our result shows that it is larger than N-2⌈log2N⌉+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-2\lceil \mathrm {log}_2N\rceil +4$$\end{document} (which is far larger than N/2) and could attain the maximum value N if suitable parameters are chosen, i.e., the 2-adic complexity of this class of interleaved sequences is large enough to resist the Rational Approximation Algorithm.
引用
收藏
页码:695 / 707
页数:12
相关论文
empty
未找到相关数据