An Almost Sure Functional Limit Theorem for the Domain of Geometric Partial Attraction of Semistable Laws

被引:0
作者
István Fazekas
Alexey Chuprunov
机构
[1] University of Debrecen,Faculty of Informatics
[2] Kazan State University,Department of Math. Stat. and Probability, Chebotarev Inst. of Mathematics and Mechanics
来源
Journal of Theoretical Probability | 2007年 / 20卷
关键词
Almost sure limit theorem; Functional limit theorem; Semistable law; Domain of partial attraction; Slowly varying function;
D O I
暂无
中图分类号
学科分类号
摘要
An almost sure functional limit theorem is obtained for variables being in the domain of geometric partial attraction of a semistable law.
引用
收藏
页码:339 / 353
页数:14
相关论文
共 33 条
[1]  
Berkes I.(2001)A universal result in almost sure central limit theory Stoch. Proc. Appl. 94 105-134
[2]  
Csáki E.(1994)On the almost sure (a.s.) central limit theorem for random variables with infinite variance J. Theor. Probab. 7 667-680
[3]  
Berkes I.(1999)Almost sure limit theorems for the St. Petersburg game Stat. Probab. Lett. 45 23-30
[4]  
Dehling H.(1988)An almost everywhere central limit theorem Math. Proc. Cambridge Phil. Soc. 104 561-574
[5]  
Berkes I.(2002)Almost sure versions of some functional limit theorems J. Math. Sci. (New York) 111 3528-3536
[6]  
Csáki E.(2005)Integral analogues of almost sure limit theorems Period. Math. Hung. 50 61-78
[7]  
Csörgő S.(1990)A probabilistic approach to domains of partial attraction Adv. Appl. Math. 11 282-327
[8]  
Brosamler G.A.(2002)Merging to semistable laws Teor. Veroyatnost. i Primenen. 47 90-109
[9]  
Chuprunov A.(1988)A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables Adv. Appl. Math. 9 259-333
[10]  
Fazekas I.(2002)Almost sure functional limit theorems Ann. Univ. Mariae Curie-Skłodowska Sect. A 56 1-18