A sum of squares not divisible by a prime

被引:0
作者
Kyoungmin Kim
Byeong-Kweon Oh
机构
[1] Hannam University,Department of Mathematics
[2] Seoul National University,Department of Mathematical Sciences and Research Institute of Mathematics
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
A sum of squares not divisible by a prime; Squares; Representations; Indivisibility; Primary 11E25; 11E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime. We define S(p) the smallest number k such that every positive integer is a sum of at most k squares of integers that are not divisible by p. In this article, we prove that S(2)=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(2)=10$$\end{document}, S(3)=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(3)=6$$\end{document}, S(5)=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(5)=5$$\end{document}, and S(p)=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(p)=4$$\end{document} for any prime p greater than 5. In particular, it is proved that every positive integer is a sum of at most four squares not divisible by 5, except the unique positive integer 79.
引用
收藏
页码:653 / 670
页数:17
相关论文
共 11 条
[1]  
Bhargava M(2000)On the Conway–Schneeberger fifteen theorem Contemp. Math. 272 27-38
[2]  
Dickson LE(1927)Quaternary quadratic forms representing all integers Am. J. Math. 49 39-56
[3]  
Ko C(1937)On the representation of a quadratic form as a sum of squares of linear forms Quart. J. Math. Oxf. 8 81-98
[4]  
Mordell LJ(1930)A new Waring’s problem with squares of linear forms Quart. J. Math. Oxf. 1 276-288
[5]  
Oh B-K(2011)Regular positive ternary quadratic forms Acta Arith. 147 233-243
[6]  
Oh BK(2018)Completely J. Number Theory 193 373-385
[7]  
Yu H(1997)-primitive binary quadratic forms Invent. math. 130 415-454
[8]  
Ono K(1916)Ramanujan’s ternary quadratic form Proc. Camb. Philos. Soc. 19 11-21
[9]  
Soundararajan K(1998)On the expression of a number in the form J. Number Theory 72 309-356
[10]  
Ramanujan S(undefined)An explicit formula for local densities of quadratic forms undefined undefined undefined-undefined