Generalizations of Arnold’s version of Euler’s theorem for matrices

被引:0
|
作者
Marcin Mazur
Bogdan V. Petrenko
机构
[1] Binghamton University,Department of Mathematics
[2] SUNY Brockport,Department of Mathematics
来源
Japanese Journal of Mathematics | 2010年 / 5卷
关键词
Euler congruences; Euler’s theorem; Fermat’s little theorem; congruences for traces; 05A10; 11A07; 11C20;
D O I
暂无
中图分类号
学科分类号
摘要
A recent result, conjectured by Arnold and proved by Zarelua, states that for a prime number p, a positive integer k, and a square matrix A with integral entries one has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm tr}(A^{p^k}) \equiv {\textrm tr}(A^{p^{k-1}}) ({\textrm mod}{p^k})$$\end{document}. We give a short proof of a more general result, which states that if the characteristic polynomials of two integral matrices A,  B are congruent modulo pk then the characteristic polynomials of Ap and Bp are congruent modulo pk+1, and then we show that Arnold’s conjecture follows from it easily. Using this result, we prove the following generalization of Euler’s theorem for any 2 × 2 integral matrix A: the characteristic polynomials of AΦ(n) and AΦ(n)-ϕ(n) are congruent modulo n. Here ϕ is the Euler function, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod_{i=1}^{l} p_i^{\alpha_i}$$\end{document} is a prime factorization of n and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi(n)=(\phi(n)+\prod_{i=1}^{l} p_i^{\alpha_i-1}(p_i+1))/2$$\end{document}.
引用
收藏
页码:183 / 189
页数:6
相关论文
共 15 条
  • [1] Generalizations of Arnold's version of Euler's theorem for matrices
    Mazur, Marcin
    Petrenko, Bogdan V.
    JAPANESE JOURNAL OF MATHEMATICS, 2010, 5 (02): : 183 - 189
  • [2] Fermat's little theorem and Euler's theorem in a class of rings
    de Melo Hernandez, Fernanda D.
    Hernandez Melo, Cesar A.
    Tapia-Recillas, Horacio
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 3064 - 3078
  • [3] Weighted forms of Euler's theorem
    Chen, William Y. C.
    Ji, Kathy Q.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) : 360 - 372
  • [4] Exponential Simplification using Euler's and Fermat's Theorem
    Mohan, Maya
    Devi, M. K. Kavitha
    Prakash, Jeevan, V
    1ST INTERNATIONAL CONFERENCE ON INFORMATION SECURITY & PRIVACY 2015, 2016, 78 : 714 - 721
  • [5] On the smoothness condition in Euler's theorem on homogeneous functions
    Dobbs, David E.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2018, 49 (08) : 1250 - 1259
  • [6] Euler's Theorem for Homogeneous White Noise Operators
    Barhoumi, Abdessatar
    Rguigui, Hafedh
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
  • [7] TOTAL ANGULAR DEFECT AND EULER'S THEOREM FOR POLYHEDRA
    Kim, Dong-Soo
    Kim, Young Ho
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2012, 19 (01): : 37 - 42
  • [8] Euler’s Theorem for Homogeneous White Noise Operators
    Abdessatar Barhoumi
    Hafedh Rguigui
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [9] ON EULER'S THEOREM IN SEMI-EUCLIDEAN SPACES Evn+1
    Coken, A. Ceylan
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (05) : 1117 - 1129
  • [10] A note on Euler's totient function
    Sandor, Jozsef
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (01) : 32 - 35