On Weak Solvability of a Flow Problem for Viscoelastic Fluid with Memory

被引:0
作者
V. G. Zvyagin
V. P. Orlov
机构
[1] Voronezh State University,
来源
Computational Mathematics and Mathematical Physics | 2023年 / 63卷
关键词
viscoelastic fluid; inhomogeneous conditions; a priori estimates; weak solution; regular Lagrangian flow;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2090 / 2106
页数:16
相关论文
共 25 条
[1]  
Oskolkov A. P.(1989)Initial-boundary value problems for equations of motion of Kelvin–Voigt fluids and Oldroyd fluids Proc. Steklov Inst. Math. 179 137-182
[2]  
Zvyagin V. G.(2017)On the weak solvability of the problem of viscoelasticity with memory Differ. Equations 53 212-217
[3]  
Orlov V. P.(2018)Solvability of one non-Newtonian fluid dynamics model with memory Nonlinear Anal.: Theory Methods Appl. 172 73-98
[4]  
Zvyagin V. G.(2018)On one problem of viscoelastic fluid dynamics with memory on an infinite time interval Discrete Continuous Dyn. Syst., Ser. B 23 3855-3877
[5]  
Orlov V. P.(2012)A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium Russ. Math. 56 48-53
[6]  
Zvyagin V. G.(2019)Dissipative solvability of an alpha model of fluid flow with memory Comput. Math. Math. Phys. 59 1185-1198
[7]  
Orlov V. P.(2020)On regularity of weak solutions to a generalized Voigt model of viscoelasticity Comput. Math. Math. Phys. 60 1872-1888
[8]  
Orlov V. P.(2016)On a model of thermoviscoelasticity of Jeffreys–Oldroyd type Comput. Math. Math. Phys. 56 1803-1812
[9]  
Zvyagin A. V.(1961)Steady flows of a viscous incompressible fluid Mat. Sb. 53 393-428
[10]  
Zvyagin V. G.(2014)The flux problem for the Navier–Stokes equations Russ. Math. Surv. 69 1065-1122