Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags

被引:0
作者
Hauke Hussmann
Daigo Shoji
Gregor Steinbrügge
Alexander Stark
Frank Sohl
机构
[1] DLR Institute of Planetary Research,
来源
Celestial Mechanics and Dynamical Astronomy | 2016年 / 126卷
关键词
Solar system; Satellites of Jupiter; Tides; Interior; Ganymede; Europa; Love numbers; JUICE;
D O I
暂无
中图分类号
学科分类号
摘要
Jupiter’s satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites’ surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_2$$\end{document} and h2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_2$$\end{document} for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags ϕk2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi _{k_2}$$\end{document} and ϕh2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi _{h_2}$$\end{document} of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference Δϕ=ϕk2-ϕh2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \phi = \phi _{k_2}- \phi _{h_2}$$\end{document} can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities <1014\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}10^{14}$$\end{document} Pa s and would indicate a highly dissipative state of the deep interior. In this case Δϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \phi $$\end{document} is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa Δϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \phi $$\end{document} could reach values exceeding 20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20^\circ $$\end{document} and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA’s Jupiter Icy Moons Explorer (JUICE) and NASA’s Europa Multiple Flyby Mission, both targeted for the Jupiter system.
引用
收藏
页码:131 / 144
页数:13
相关论文
共 88 条
[1]  
Bland MT(2009)The orbital-thermal evolution and global expansion of Ganymede Icarus 200 207-221
[2]  
Showman AP(2014)Tidal heating in icy satellite oceans Icarus 229 11-30
[3]  
Tobie G(1996)Rheology of water ices V and VI J. Geophys. Res. 101 2989-3002
[4]  
Chen EMA(2010)Rheological and thermal properties of icy materials Space Sci. Rev. 153 273-298
[5]  
Nimmo F(2001)Superplastic deformation of ice: experimental observations J. Geophys. Res. 106 11-983
[6]  
Glatzmaier GA(2012)Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds Icarus 221 970-21
[7]  
Durham WB(2013)JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system Planet. Space Sci. 78 1-410
[8]  
Stern LA(2004)Thermal-orbital evolution of Io and Europa Icarus 171 391-348
[9]  
Kirby SH(2010)Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites Space Sci. Rev. 153 317-724
[10]  
Durham WB(2011)Measuring tidal deformations at Europa’s surface Adv. Space Res. 48 718-2288