Approximation Properties of Some Modified Szász–Mirakjan–Kantorovich Operators

被引:0
|
作者
R. Yadav
R. Meher
V. N. Mishra
机构
[1] Applied Mathematics and Humanities Department,
[2] Sardar Vallabhbhai National Institute of Technology Surat,undefined
[3] Department of Mathematics,undefined
[4] Indira Gandhi National Tribal University,undefined
来源
Numerical Analysis and Applications | 2022年 / 15卷
关键词
rate of convergence; Lipschitz function; Ditzian–Totik modulus of smoothness; function of bounded variation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:170 / 185
页数:15
相关论文
共 50 条
  • [31] APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS
    Yu, Kan
    Cheng, Wentao
    Fan, Ligang
    Zhou, Xiaoling
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 547 - 558
  • [32] Some approximation results involving the q-Szasz-Mirakjan-Kantorovich type operators via Dunkl's generalization
    Srivastava, H. M.
    Mursaleen, M.
    Alotaibi, Abdullah M.
    Nasiruzzaman, Md.
    Al-Abied, A. A. H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (15) : 5437 - 5452
  • [33] Szász-Baskakov type operators based on q-integers
    Purshottam N Agrawal
    Harun Karsli
    Meenu Goyal
    Journal of Inequalities and Applications, 2014
  • [34] Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators
    Nowak, Grzegorz
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (01): : 67 - 78
  • [35] Rate of convergence of Szász-Durrmeyer type operators involving Hermite polynomials
    Kumar A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1527 - 1543
  • [36] Approximation properties of modified (p, q)-Szasz-Mirakyan-Kantorovich operators
    Zheng, Zhongbin
    Fang, Jinwu
    Cheng, Wentao
    Guo, Zhidong
    Zhou, Xiaoling
    AIMS MATHEMATICS, 2020, 5 (05): : 4959 - 4973
  • [37] A Study of Szász-Durremeyer-Type Operators Involving Adjoint Bernoulli Polynomials
    Rao, Nadeem
    Farid, Mohammad
    Ali, Rehan
    MATHEMATICS, 2024, 12 (23)
  • [38] Convergence Rate of Szász Operators Involving Boas–Buck-Type Polynomials
    Özlem Öksüzer Yılık
    Tarul Garg
    P. N. Agrawal
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 13 - 22
  • [39] Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials
    Uğur Kadak
    Vishnu Narayan Mishra
    Shikha Pandey
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1443 - 1462
  • [40] Szasz-Mirakjan-Kantorovich Operators Reproducing Affine Functions
    Bustamante, Jorge
    RESULTS IN MATHEMATICS, 2020, 75 (03)