Approximation Properties of Some Modified Szász–Mirakjan–Kantorovich Operators

被引:0
|
作者
R. Yadav
R. Meher
V. N. Mishra
机构
[1] Applied Mathematics and Humanities Department,
[2] Sardar Vallabhbhai National Institute of Technology Surat,undefined
[3] Department of Mathematics,undefined
[4] Indira Gandhi National Tribal University,undefined
来源
Numerical Analysis and Applications | 2022年 / 15卷
关键词
rate of convergence; Lipschitz function; Ditzian–Totik modulus of smoothness; function of bounded variation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:170 / 185
页数:15
相关论文
共 50 条
  • [21] Approximation on a class of Szász–Mirakyan operators via second kind of beta operators
    M. Nasiruzzaman
    Nadeem Rao
    Anshul Srivastava
    Ravi Kumar
    Journal of Inequalities and Applications, 2020
  • [22] Approximation by Generalised Szász-type Operators based on Appell Polynomials
    Kumar, Ajay
    IRANIAN JOURNAL OF SCIENCE, 2024, : 181 - 189
  • [23] Szász–Gamma Operators Based on Dunkl Analogue
    Abdul Wafi
    Nadeem Rao
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 213 - 223
  • [24] The Dunkl generalization of Stancu type q-Szasz-Mirakjan-Kantorovich operators and some approximation results
    Mursaleen, M.
    Ahasan, Mohd
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) : 363 - 370
  • [25] Approximation properties of λ-Kantorovich operators
    Acu, Ana-Maria
    Manav, Nesibe
    Sofonea, Daniel Florin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [26] Approximation properties of λ-Kantorovich operators
    Ana-Maria Acu
    Nesibe Manav
    Daniel Florin Sofonea
    Journal of Inequalities and Applications, 2018
  • [27] Generalization of Szász operators involving multiple Sheffer polynomials
    Mahvish Ali
    Richard B. Paris
    The Journal of Analysis, 2023, 31 : 1 - 19
  • [28] Hermite polynomials linking Szász-Durrmeyer operators
    Ayman-Mursaleen, Mohammad
    Heshamuddin, Md.
    Rao, Nadeem
    Sinha, Brijesh Kumar
    Yadav, Avinash Kumar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04)
  • [29] Szász-Durrmeyer Operators Based on Dunkl Analogue
    Abdul Wafi
    Nadeem Rao
    Complex Analysis and Operator Theory, 2018, 12 : 1519 - 1536
  • [30] Approximation on a new class of Szasz-Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties
    Mishra, Vishnu Narayan
    Yadav, Rishikesh
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 245 - 273