Eigenvalue type problem in s(., .)-fractional Musielak–Sobolev spaces

被引:0
作者
Mohammed Srati
机构
[1] University Mohammed First,High School of Education and Formation (ESEF)
来源
Journal of Elliptic and Parabolic Equations | 2024年 / 10卷
关键词
(.,.)-Fractional Musielak–Sobolev spaces; Eigenvalue problems; Ekeland’s ariational principle; Primary 35R11; Secondary 46E35; 35J20; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the s(., .)-fractional Musielak–Sobolev spaces Ws(x,y)LΦx,y(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s(x,y)}L_{\varPhi _{x,y}}(\Omega )$$\end{document}. Then, we show that there exists λ∗>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _*>0$$\end{document} such that any λ∈(0,λ∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0, \lambda _*)$$\end{document} is an eigenvalue for the following problem, by means of Ekeland’s variational principle (Pa)-Δa(x,.)s(x,.)u=λ|u|q(x)-2uinΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ({\mathcal {P}}_a) \left\{ \begin{array}{clclc} \left( -\Delta \right) ^{s(x,.)}_{a_{(x,.)}} u &{} = &{} \lambda |u|^{q(x)-2}u &{} \text { in }&{} \Omega , \\ \\ u &{} = &{} 0 \hspace{0.2cm} &{} \text { in } &{} {\mathbb {R}} ^N\setminus \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded open subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} ^N$$\end{document} with C0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{0,1}$$\end{document}-regularity and bounded boundary.
引用
收藏
页码:387 / 413
页数:26
相关论文
共 79 条
  • [1] Azroul E(2020)On a class of nonlocal problems in new fractional Musielak-Sobolev spaces Appl. Anal. 22 1-18
  • [2] Benkirane A(2020)Embedding and extension results in fractional Musielak-Sobolev spaces Appl. Anal. 11 379-389
  • [3] Shimi M(2020)Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space Adv. Oper. Theory 61 681-695
  • [4] Srati M(2020)Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces Adv. Oper. Theory 55 241-267
  • [5] Azroul E(2019)Existence and Multiplicity of solutions for fractional Appl. Anal. 1 324-353
  • [6] Benkirane A(2019)-Kirchhoff type problems in Appl. Anal. 47 424-446
  • [7] Shimi M(2020)On a class of fractional J. Nonlinear Funct. Anal. 263 1741-1747
  • [8] Srati M(2018)-Kirchhoff type problems Discrete Contin. Dyn. Syst. 91 1271-1279
  • [9] Azroul E(2020)Three solutions for fractional J. Math. Phys. 95 1-10
  • [10] Benkirane A(2020)-Laplacian Dirichlet problems with weight Topol. Methods Nonlinear Anal. 76 592-618