Error Estimates of the Finite Element Method for Interior Transmission Problems

被引:0
作者
Xinming Wu
Wenbin Chen
机构
[1] Fudan University,The Key Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences
来源
Journal of Scientific Computing | 2013年 / 57卷
关键词
Interior transmission problem; Finite element method; Error estimates; 65N30; 65N50;
D O I
暂无
中图分类号
学科分类号
摘要
The interior transmission problem (ITP) plays an important role in the investigation of the inverse scattering problem. In this paper we propose the finite element method for solving the ITP. Based on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb T $$\end{document}-coercivity, we derive both priori error estimate and a posteriori error estimate of the finite element approximation. Numerical experiments are also included to illustrate the accuracy of the finite element method.
引用
收藏
页码:331 / 348
页数:17
相关论文
共 83 条
[1]  
Babuška I(1997)A posteriori error estimation for the finite element solutions of Helmholtz equations—part II: estimation of the pollution error Int. J. Numer. Meth. Eng. 40 3883-3900
[2]  
Ihlenburg F(1978)Error estimates for adaptive finite element computations SIAM J. Numer. Anal. 15 736-754
[3]  
Strouboulis T(1994)A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries Math. Comput. 63 1-17
[4]  
Gangaraj SK(2012)T-coercivity for scalar interface problems between dielectrics and metamaterials Math. Model. Numer. Anal. 46 1363-1387
[5]  
Babuška I(2011)On the use of T-coercivity to study the interior transmission eigenvalue problem C. R. Math. Acad. Sci. Paris 349 647-651
[6]  
Rheinboldt WC(2010)Time harmonic wave diffraction problems in materials with sign-shifting coefficients J. Comput. Appl. Math. 234 1912-1919
[7]  
Bramble JH(2008)Error estimates for the ultra weak variational formulation of the Helmholtz equation ESIAM:M2AN 42 925-940
[8]  
King JT(2010)The interior transmission problem for regions with cavities SIAM J. Math. Anal. 42 145-162
[9]  
Bonnet-Ben Dhia AS(2010)The existence of an infinite discrete set of the transmission eigenvalues SIAM J. Math. Anal. 42 237-255
[10]  
Chesnel L(2003)An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures SIAM J. Numer. Anal. 41 799-826