Commutators of Cauchy–Fantappiè Type Integrals on Generalized Morrey Spaces on Complex Ellipsoids

被引:0
作者
Nguyen Anh Dao
Xuan Thinh Duong
Ly Kim Ha
机构
[1] ShanghaiTech University,Institute of Mathematical Sciences
[2] Macquarie University,Department of Mathematics
[3] University of Science,Faculty of Mathematics and Computer Science
[4] Vietnam National University Ho Chi Minh City (VNU-HCM),undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
BMO; VMO; Commutators; Singular integral operators; Convex domains of finite type; 47B40; 47B70; 32A55; 32A26; 32A37; 32A50;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be a domain which belongs to a class of bounded weakly pseudoconvex domains of finite type in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, let dλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\lambda $$\end{document} be the Monge–Ampère boundary measure on bΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\Omega $$\end{document} and ϱ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho \ge 0$$\end{document} be a non-decreasing function. The aim of this paper is to establish the characterizations of boundedness and compactness for the commutator operators of Cauchy–Fantappiè type integrals with L1(bΩ,dλ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(b\Omega ,d\lambda )$$\end{document} functions on the generalized Morrey spaces Lϱp(bΩ,dλ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}_\varrho (b\Omega ,d\lambda )$$\end{document}, with p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1, \infty )$$\end{document}.
引用
收藏
页码:7538 / 7567
页数:29
相关论文
共 54 条
  • [1] Arai H(1997)Morrey spaces on spaces of homogeneous type and estimates for Math. Nachr. 186 5-20
  • [2] Mizuhara T(1993) and the Cauchy–Szegö projection J. Funct. Anal. 111 350-379
  • [3] Beatrous F(1982)Boundedness and compactness of operators of Hankel type Compos. Math. 46 159-226
  • [4] Li S-Y(1996)Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimations Boll. Un. Mat. Ital. B (7) 10 843-883
  • [5] Bonami A(1957)Commutators of singular integrals on homogeneous spaces Am. J. Math. 79 901-921
  • [6] Lohoué N(1963)Singular integral operators and differential equations Ann. Scuola Norm. Sup. Pisa (3) 17 175-188
  • [7] Bramanti M(2012)Proprietà di hölderianità di alcune classi di funzioni Can. J. Math. 64 257-281
  • [8] Cerutti MC(1977)Compactness of commutators for singular integrals on Morrey spaces Bull. Am. Math. Soc. 83 569-645
  • [9] Calderón AP(1976)Extensions of Hardy spaces and their use in analysis Ann. Math. (2) 103 611-635
  • [10] Zygmund A(2007)Factorization theorems for Hardy spaces in several variables J. Fourier Anal. Appl. 13 87-111