The Rank-Width of Edge-Coloured Graphs

被引:0
作者
Mamadou Moustapha Kanté
Michael Rao
机构
[1] LIMOS,Clermont
[2] CNRS,Université, Université Blaise Pascal
[3] LaBRI,Université Bordeaux 1
[4] CNRS,undefined
来源
Theory of Computing Systems | 2013年 / 52卷
关键词
Rank-width; Clique-width; Local complementation; Vertex-minor; Excluded configuration; 2-Structure; Sigma-symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{F}}^{*}$\end{document}-graphs—\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}$\end{document}-coloured graphs where each edge has exactly one colour from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}\setminus \{0\},\ \mathbb{F}$\end{document} a field—and named respectively \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}$\end{document}-bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs and prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs of bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width are characterised by a list of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs to exclude as vertex-minors (this list is finite if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document} is finite). An algorithm that decides in time O(n3) whether an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graph with n vertices has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width (resp. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-bi-rank-width) at most k, for fixed k and fixed finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}, is also given. Graph operations to check MSOL-definable properties on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs of bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width (resp. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.
引用
收藏
页码:599 / 644
页数:45
相关论文
共 62 条
  • [21] Olariu S.(2006)Branch-width parse trees, and monadic second-order logic for matroids J. Comb. Theory, Ser. B 96 325-351
  • [22] Courcelle B.(2006)The tutte polynomial for matroids of bounded branch-width Comb. Probab. Comput. 15 397-409
  • [23] Oum S.(2008)Finding branch-decompositions and rank-decompositions SIAM J. Comput. 38 1012-1032
  • [24] Cunningham W.H.(2009)Developments on graphs of bounded clique-width Discrete Appl. Math. 157 2747-2761
  • [25] Fellows M.(2012)Well-quasi-ordering of matrices under Schur complement and applications to directed graphs Eur. J. Comb. 97 846-858
  • [26] Rosamond F.A.(2007)The relative clique-width of a graph J. Comb. Theory, Ser. B 95 79-100
  • [27] Rotics U.(2005)Rank-width and vertex-minors J. Comb. Theory, Ser. B 96 514-528
  • [28] Szeider S.(2006)Approximating clique-width and branch-width J. Comb. Theory, Ser. B 22 666-682
  • [29] Fisher E.(2008)Rank-width and well-quasi-ordering SIAM J. Discrete Math. 7 309-322
  • [30] Makowsky J.A.(1986)Graph minors II: algorithmic aspects of tree-width J. Algorithms 159 1022-1039