The Rank-Width of Edge-Coloured Graphs

被引:0
作者
Mamadou Moustapha Kanté
Michael Rao
机构
[1] LIMOS,Clermont
[2] CNRS,Université, Université Blaise Pascal
[3] LaBRI,Université Bordeaux 1
[4] CNRS,undefined
来源
Theory of Computing Systems | 2013年 / 52卷
关键词
Rank-width; Clique-width; Local complementation; Vertex-minor; Excluded configuration; 2-Structure; Sigma-symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{F}}^{*}$\end{document}-graphs—\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}$\end{document}-coloured graphs where each edge has exactly one colour from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}\setminus \{0\},\ \mathbb{F}$\end{document} a field—and named respectively \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}$\end{document}-bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs and prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs of bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width are characterised by a list of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs to exclude as vertex-minors (this list is finite if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document} is finite). An algorithm that decides in time O(n3) whether an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graph with n vertices has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width (resp. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-bi-rank-width) at most k, for fixed k and fixed finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}, is also given. Graph operations to check MSOL-definable properties on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^{*}$\end{document}-graphs of bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-rank-width (resp. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}-bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.
引用
收藏
页码:599 / 644
页数:45
相关论文
共 62 条
  • [1] Bui-Xuan B.(2010)-join decomposable graphs and algorithms with runtime single exponential in rank-width Discrete Appl. Math. 158 809-819
  • [2] Telle J.A.(1987)Digraph decompositions and Eulerian systems SIAM J. Algebr. Discrete Methods 8 323-337
  • [3] Vatshelle M.(1994)Circle graph obstructions J. Comb. Theory, Ser. B 60 107-144
  • [4] Bouchet A.(2006)Recognisability, hypergraph operations and logical types Inf. Comput. 204 853-919
  • [5] Bouchet A.(1993)Handle-rewriting hypergraph grammars J. Comput. Syst. Sci. 46 218-270
  • [6] Blumensath A.(1996)Basic notions of universal algebra for language theory and graph grammars Theor. Comput. Sci. 163 1-54
  • [7] Courcelle B.(2006)The monadic second-order logic of graphs XV: on a conjecture by D. Seese J. Appl. Log. 4 79-114
  • [8] Courcelle B.(2009)Graph operations characterising rank-width Discrete Appl. Math. 157 627-640
  • [9] Engelfriet J.(2002)Fusion in relational structures and the verification of monadic second-order properties Math. Struct. Comput. Sci. 12 203-235
  • [10] Rozenberg G.(2000)Linear time solvable optimisation problems on graphs of bounded clique-width Theory Comput. Syst. 33 125-150