Multiscale Finite Element Methods for an Elliptic Optimal Control Problem with Rough Coefficients

被引:0
|
作者
Susanne C. Brenner
José C. Garay
Li-Yeng Sung
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
来源
Journal of Scientific Computing | 2022年 / 91卷
关键词
Multiscale; Rough coefficients; Elliptic optimal control; Localized orthogonal decomposition; Domain decomposition; P-MINRES; 65N30; 65N15; 65N55; 49N10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate multiscale finite element methods for an elliptic distributed optimal control problem with rough coefficients. They are based on the (local) orthogonal decomposition methodology of Målqvist and Peterseim.
引用
收藏
相关论文
共 50 条
  • [31] Fully Discrete Interpolation Coefficients Mixed Finite Element Methods for Semi-Linear Parabolic Optimal Control Problem
    Wang, Jing
    Lu, Zuliang
    Cai, Fei
    Feng, Yuming
    IEEE ACCESS, 2022, 10 : 54291 - 54300
  • [32] Superconvergence of rectangular finite element with interpolated coefficients for semilinear elliptic problem
    Xiong, Zhiguang
    Chen, Chuanmiao
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) : 1577 - 1584
  • [33] REMARKS ON MIXED FINITE-ELEMENT METHODS FOR PROBLEMS WITH ROUGH COEFFICIENTS
    FALK, RS
    OSBORN, JE
    MATHEMATICS OF COMPUTATION, 1994, 62 (205) : 1 - 19
  • [34] Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints
    Du, Ning
    Ge, Liang
    Liu, Wenbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (01) : 160 - 183
  • [35] Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints
    Ning Du
    Liang Ge
    Wenbin Liu
    Journal of Scientific Computing, 2014, 60 : 160 - 183
  • [36] A MORLEY FINITE ELEMENT METHOD FOR AN ELLIPTIC DISTRIBUTED OPTIMAL CONTROL PROBLEM WITH POINTWISE STATE AND CONTROL CONSTRAINTS
    Brenner, Susanne C.
    Gudi, Thirupathi
    Porwal, Kamana
    Sung, Li-yeng
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (03) : 1181 - 1206
  • [37] Some Observations on the Multiscale Finite Element Method for Elliptic Equations with Separable Variables Coefficients
    Jiang, Shan
    Sun, Mei-ling
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 1, 2009, : 158 - 164
  • [38] Superconvergence Analysis of a Multiscale Finite Element Method for Elliptic Problems with Rapidly Oscillating Coefficients
    Guan, Xiaofei
    Wang, Xiaoling
    Wang, Cheng
    Liu, Xian
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [39] On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients
    Chen, ZM
    Dai, SB
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02): : 443 - 462
  • [40] Adaptive finite element methods for an optimal control problem involving Dirac measures
    Allendes, Alejandro
    Otarola, Enrique
    Rankin, Richard
    Salgado, Abner J.
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 159 - 197