Stokes elements on cubic meshes yielding divergence-free approximations

被引:0
|
作者
Michael Neilan
Duygu Sap
机构
[1] University of Pittsburgh,
来源
Calcolo | 2016年 / 53卷
关键词
Stokes; Finite element analysis; Divergence-free; 65N30; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
Conforming piecewise polynomial spaces with respect to cubic meshes are constructed for the Stokes problem in arbitrary dimensions yielding exactly divergence-free velocity approximations. The derivation of the finite element pair is motivated by a smooth de Rham complex that is well-suited for the Stokes problem. We derive the stability and convergence properties of the new elements as well as the construction of reduced elements with less global unknowns.
引用
收藏
页码:263 / 283
页数:20
相关论文
共 50 条
  • [21] A note on a lowest order divergence-free Stokes element on quadrilaterals
    Zhou, Xinchen
    Meng, Zhaoliang
    Fan, Xin
    Luo, Zhongxuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 4008 - 4016
  • [22] Piecewise divergence-free discontinuous Galerkin methods for Stokes flow
    Hansbo, Peter
    Larson, Mats G.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (05): : 355 - 366
  • [23] Divergence-free cut finite element methods for Stokes flow
    Frachon, Thomas
    Nilsson, Erik
    Zahedi, Sara
    BIT NUMERICAL MATHEMATICS, 2024, 64 (04)
  • [24] Remarks on multilevel bases for divergence-free finite elements
    Oswald, P
    NUMERICAL ALGORITHMS, 2001, 27 (02) : 131 - 152
  • [25] Remarks on Multilevel Bases for Divergence-Free Finite Elements
    P. Oswald
    Numerical Algorithms, 2001, 27 : 131 - 152
  • [26] DIVERGENCE-FREE RECONSTRUCTION OPERATORS FOR PRESSURE-ROBUST STOKES DISCRETIZATIONS WITH CONTINUOUS PRESSURE FINITE ELEMENTS
    Lederer, Philip L.
    Linke, Alexander
    Merdon, Christian
    Schoeberl, Joachim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1291 - 1314
  • [27] Low-order divergence-free approximations for the Stokes problem on Worsey-Farin and Powell-Sabin splits
    Fabien, Maurice
    Guzman, Johnny
    Neilan, Michael
    Zytoon, Ahmed
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [28] Statistical learning for fluid flows: Sparse Fourier divergence-free approximations
    Espath, Luis
    Kabanov, Dmitry
    Kiessling, Jonas
    Tempone, Raul
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [29] INF-SUP STABLE FINITE ELEMENTS ON BARYCENTRIC REFINEMENTS PRODUCING DIVERGENCE-FREE APPROXIMATIONS IN ARBITRARY DIMENSIONS
    Guzman, Johnny
    Neilan, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 2826 - 2844
  • [30] A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations
    Bernardo Cockburn
    Guido Kanschat
    Dominik Schötzau
    Journal of Scientific Computing, 2007, 31 : 61 - 73