On the Lucky Choice Number of Graphs

被引:0
|
作者
S. Akbari
M. Ghanbari
R. Manaviyat
S. Zare
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] Payame Noor University,Mathematics Department
[4] Amirkabir University of Technology,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Lucky labeling; Lucky choice number; Lucky choosable; Combinatorial Nullstellensatz; 05C25; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f: V (G) \rightarrow \mathbb{N}}$$\end{document} is a labeling of the vertices of G. Let S(v) denote the sum of labels over all neighbors of the vertex v in G. A labeling f of G is called lucky if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S(u) \neq S(v),}$$\end{document} for every pair of adjacent vertices u and v. Also, for each vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G),}$$\end{document} let L(v) denote a list of natural numbers available at v. A list lucky labeling, is a lucky labeling f such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(v) \in L(v),}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G).}$$\end{document} A graph G is said to be lucky k-choosable if every k-list assignment of natural numbers to the vertices of G permits a list lucky labeling of G. The lucky choice number of G, ηl(G), is the minimum natural number k such that G is lucky k-choosable. In this paper, we prove that for every graph G with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \geq 2, \eta_{l}(G) \leq \Delta^2-\Delta + 1,}$$\end{document} where Δ denotes the maximum degree of G. Among other results we show that for every 3-list assignment to the vertices of a forest, there is a list lucky labeling which is a proper vertex coloring too.
引用
收藏
页码:157 / 163
页数:6
相关论文
共 50 条
  • [41] Regular Graphs of Odd Degree Are Antimagic
    Cranston, Daniel W.
    Liang, Yu-Chang
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 28 - 33
  • [42] Total Weight Choosability of Cone Graphs
    Yunfang Tang
    Tsai-Lien Wong
    Xuding Zhu
    Graphs and Combinatorics, 2016, 32 : 1203 - 1216
  • [43] Sigma Partitioning: Complexity and Random Graphs
    Dehghan, Ali
    Sadeghi, Mohammad-Reza
    Ahadi, Arash
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (02)
  • [44] Computing the list chromatic index of graphs
    Schauz, Uwe
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 52-53 : 182 - 191
  • [45] Graphs of Large Linear Size Are Antimagic
    Eccles, Tom
    JOURNAL OF GRAPH THEORY, 2016, 81 (03) : 236 - 261
  • [46] Total weight choosability of Mycielski graphs
    Yunfang Tang
    Xuding Zhu
    Journal of Combinatorial Optimization, 2017, 33 : 165 - 182
  • [47] Total Weight Choosability of Cone Graphs
    Tang, Yunfang
    Wong, Tsai-Lien
    Zhu, Xuding
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1203 - 1216
  • [48] Antimagic Properties of Graphs with Large Maximum Degree
    Yilma, Zelealem B.
    JOURNAL OF GRAPH THEORY, 2013, 72 (04) : 367 - 373
  • [49] Neighbor Sum Distinguishing Index of Sparse Graphs
    Ji Hui WANG
    Bao Jian QIU
    Jian Sheng CAI
    Acta Mathematica Sinica,English Series, 2020, (06) : 673 - 690
  • [50] Combinatorial Nullstellensatz and DP-coloring of graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    DISCRETE MATHEMATICS, 2020, 343 (12)