On the Lucky Choice Number of Graphs

被引:0
|
作者
S. Akbari
M. Ghanbari
R. Manaviyat
S. Zare
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] Payame Noor University,Mathematics Department
[4] Amirkabir University of Technology,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Lucky labeling; Lucky choice number; Lucky choosable; Combinatorial Nullstellensatz; 05C25; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f: V (G) \rightarrow \mathbb{N}}$$\end{document} is a labeling of the vertices of G. Let S(v) denote the sum of labels over all neighbors of the vertex v in G. A labeling f of G is called lucky if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S(u) \neq S(v),}$$\end{document} for every pair of adjacent vertices u and v. Also, for each vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G),}$$\end{document} let L(v) denote a list of natural numbers available at v. A list lucky labeling, is a lucky labeling f such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(v) \in L(v),}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G).}$$\end{document} A graph G is said to be lucky k-choosable if every k-list assignment of natural numbers to the vertices of G permits a list lucky labeling of G. The lucky choice number of G, ηl(G), is the minimum natural number k such that G is lucky k-choosable. In this paper, we prove that for every graph G with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \geq 2, \eta_{l}(G) \leq \Delta^2-\Delta + 1,}$$\end{document} where Δ denotes the maximum degree of G. Among other results we show that for every 3-list assignment to the vertices of a forest, there is a list lucky labeling which is a proper vertex coloring too.
引用
收藏
页码:157 / 163
页数:6
相关论文
共 50 条
  • [31] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [32] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [33] Local antimagic orientation of graphs
    Yulin Chang
    Fei Jing
    Guanghui Wang
    Journal of Combinatorial Optimization, 2020, 39 : 1129 - 1152
  • [34] Additive Coloring of Planar Graphs
    Bartnicki, Tomasz
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Matecki, Grzegorz
    Zelazny, Wiktor
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1087 - 1098
  • [35] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Lin Sun
    Guanglong Yu
    Jianliang Wu
    Journal of Combinatorial Optimization, 2024, 47
  • [36] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Sun, Lin
    Yu, Guanglong
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (03)
  • [37] Total weight choosability of Mycielski graphs
    Tang, Yunfang
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 165 - 182
  • [38] Antimagic labelling of vertex weighted graphs
    Wong, Tsai-Lien
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2012, 70 (03) : 348 - 359
  • [39] Antimagic orientation of biregular bipartite graphs
    Shan, Songling
    Yu, Xiaowei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04)
  • [40] Some notes on the energy of graphs with loops
    Akbari, S.
    Kucukcifci, S.
    Saveh, H.
    LINEAR & MULTILINEAR ALGEBRA, 2025,