On the Lucky Choice Number of Graphs

被引:0
|
作者
S. Akbari
M. Ghanbari
R. Manaviyat
S. Zare
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] Payame Noor University,Mathematics Department
[4] Amirkabir University of Technology,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Lucky labeling; Lucky choice number; Lucky choosable; Combinatorial Nullstellensatz; 05C25; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f: V (G) \rightarrow \mathbb{N}}$$\end{document} is a labeling of the vertices of G. Let S(v) denote the sum of labels over all neighbors of the vertex v in G. A labeling f of G is called lucky if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S(u) \neq S(v),}$$\end{document} for every pair of adjacent vertices u and v. Also, for each vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G),}$$\end{document} let L(v) denote a list of natural numbers available at v. A list lucky labeling, is a lucky labeling f such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(v) \in L(v),}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G).}$$\end{document} A graph G is said to be lucky k-choosable if every k-list assignment of natural numbers to the vertices of G permits a list lucky labeling of G. The lucky choice number of G, ηl(G), is the minimum natural number k such that G is lucky k-choosable. In this paper, we prove that for every graph G with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \geq 2, \eta_{l}(G) \leq \Delta^2-\Delta + 1,}$$\end{document} where Δ denotes the maximum degree of G. Among other results we show that for every 3-list assignment to the vertices of a forest, there is a list lucky labeling which is a proper vertex coloring too.
引用
收藏
页码:157 / 163
页数:6
相关论文
共 50 条
  • [21] On the Alon-Tarsi number of semi-strong product of graphs
    Niu, Lin
    Li, Xiangwen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (01)
  • [22] On the algorithmic complexity of adjacent vertex closed distinguishing colorings number of graphs
    Dehghan, Ali
    Mollahajiaghaei, Mohsen
    DISCRETE APPLIED MATHEMATICS, 2017, 218 : 82 - 97
  • [23] Neighbor Sum Distinguishing Total Chromatic Number of Graphs with Lower Average Degree
    Huang, Danjun
    Bao, Dan
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (02) : 206 - 218
  • [24] The Alon-Tarsi number of K5-minor-free graphs
    Abe, Toshiki
    Kim, Seog-Jin
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [25] Neighbor sum distinguishing total chromatic number of 2-degenerate graphs
    Xu, Changqing
    Ge, Shan
    Li, Jianguo
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 349 - 352
  • [26] A characterization for the neighbor-distinguishing total chromatic number of planar graphs with Δ=13
    Huo, Jingjing
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2018, 341 (11) : 3044 - 3056
  • [27] Some New Results on Lucky Labeling
    Ashwini, J.
    Selvam, S. Pethanachi
    Gnanajothi, R. B.
    BAGHDAD SCIENCE JOURNAL, 2023, 20 (01) : 365 - 370
  • [28] Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10
    Yang, Donglei
    Sun, Lin
    Yu, Xiaowei
    Wu, Jianliang
    Zhou, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 456 - 468
  • [29] ADDITIVE LIST COLORING OF PLANAR GRAPHS WITH GIVEN GIRTH
    Brandt, Axel
    Jahanbekam, Sogol
    White, Jennifer
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 855 - 873
  • [30] Planar graphs with girth 20 are additively 3-choosable
    Brandt, Axel
    Tenpas, Nathan
    Yerger, Carl R.
    DISCRETE APPLIED MATHEMATICS, 2020, 277 : 14 - 21