On the Lucky Choice Number of Graphs

被引:0
|
作者
S. Akbari
M. Ghanbari
R. Manaviyat
S. Zare
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] Payame Noor University,Mathematics Department
[4] Amirkabir University of Technology,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Lucky labeling; Lucky choice number; Lucky choosable; Combinatorial Nullstellensatz; 05C25; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f: V (G) \rightarrow \mathbb{N}}$$\end{document} is a labeling of the vertices of G. Let S(v) denote the sum of labels over all neighbors of the vertex v in G. A labeling f of G is called lucky if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S(u) \neq S(v),}$$\end{document} for every pair of adjacent vertices u and v. Also, for each vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G),}$$\end{document} let L(v) denote a list of natural numbers available at v. A list lucky labeling, is a lucky labeling f such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(v) \in L(v),}$$\end{document} for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G).}$$\end{document} A graph G is said to be lucky k-choosable if every k-list assignment of natural numbers to the vertices of G permits a list lucky labeling of G. The lucky choice number of G, ηl(G), is the minimum natural number k such that G is lucky k-choosable. In this paper, we prove that for every graph G with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \geq 2, \eta_{l}(G) \leq \Delta^2-\Delta + 1,}$$\end{document} where Δ denotes the maximum degree of G. Among other results we show that for every 3-list assignment to the vertices of a forest, there is a list lucky labeling which is a proper vertex coloring too.
引用
收藏
页码:157 / 163
页数:6
相关论文
共 50 条
  • [1] On the Lucky Choice Number of Graphs
    Akbari, S.
    Ghanbari, M.
    Manaviyat, R.
    Zare, S.
    GRAPHS AND COMBINATORICS, 2013, 29 (02) : 157 - 163
  • [2] Lucky labelings of graphs
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Zelazny, Wiktor
    INFORMATION PROCESSING LETTERS, 2009, 109 (18) : 1078 - 1081
  • [3] Computation of lucky number of planar graphs is NP-hard
    Ahadi, A.
    Dehghan, A.
    Kazemi, M.
    Mollaahmadi, E.
    INFORMATION PROCESSING LETTERS, 2012, 112 (04) : 109 - 112
  • [4] d-Lucky Labeling of Graphs
    Miller, Mirka
    Rajasingh, Indra
    Emilet, D. Ahima
    Jemilet, D. Azubha
    3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 : 766 - 771
  • [5] e-Lucky Labeling of Certain Graphs
    Augustine, Tony
    Roy, S.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04) : 1091 - 1097
  • [6] Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz
    Cun-quan Qu
    Lai-hao Ding
    Guang-hui Wang
    Gui-ying Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 537 - 548
  • [7] Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz
    Cun-quan QU
    Lai-hao DING
    Guang-hui WANG
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2016, 32 (02) : 537 - 548
  • [8] Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz
    Qu, Cun-quan
    Ding, Lai-hao
    Wang, Guang-hui
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 537 - 548
  • [9] Neighbor sum distinguishing total choice number of NIC-planar graphs with restricted conditions
    Zhang, Donghan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (06) : 1845 - 1856
  • [10] Neighbor Sum Distinguishing Total Choice Number of Planar Graphs without 6-cycles
    Zhang, Dong Han
    Lu, You
    Zhang, Sheng Gui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (12) : 1417 - 1428