Generalized Variable-Coefficient KP Equation

被引:0
|
作者
Yi-Tian Gao
Bo Tian
机构
来源
International Journal of Theoretical Physics | 1998年 / 37卷
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Realistic Model; Symbolic Computation;
D O I
暂无
中图分类号
学科分类号
摘要
The variable-coefficient generalizations of thecelebrated KP equation (GvcKPs) are realistic models forvarious physical and engineering situations. In thisnote, the application of symbolic computation and the truncated Painleve expansion leads toan auto-Backlund transformation and soliton-typedsolutions to a type of the GvcKPs.
引用
收藏
页码:2299 / 2301
页数:2
相关论文
共 50 条
  • [1] Generalized variable-coefficient KP equation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (08) : 2299 - 2301
  • [2] On a variable-coefficient modified KP equation and a generalized variable-coefficient KP equation with computerized symbolic computation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (06): : 819 - 833
  • [3] Pfaffianization of the variable-coefficient KP equation
    Zhang, Yuan-Yuan
    Zheng, Ying
    Zhang, Hong-Qing
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1000 - 1004
  • [4] Grammian solutions to a variable-coefficient KP equation
    Ye Ling-Ya
    Lv Yi-Neng
    Zhang Yi
    Jin Hui-Ping
    CHINESE PHYSICS LETTERS, 2008, 25 (02) : 357 - 358
  • [5] On the general variable-coefficient KP equation with self-consistent sources
    Sun, Ye-Peng
    Tam, Hon-Wah
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [6] Solitons for a generalized variable-coefficient nonlinear Schrodinger equation
    Wang Huan
    Li Biao
    CHINESE PHYSICS B, 2011, 20 (04)
  • [7] DIFFERENTIAL INVARIANTS OF A GENERALIZED VARIABLE-COEFFICIENT GARDNER EQUATION
    de la Rosa, Rafael
    Santos Bruzon, Maria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (04): : 747 - 757
  • [8] Solitons for a generalized variable-coefficient nonlinear Schrdinger equation
    王欢
    李彪
    Chinese Physics B, 2011, 20 (04) : 12 - 19
  • [9] On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation
    Tian, Shou-Fu
    Zhang, Hong-Qing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (05)
  • [10] New exact solutions for a generalized variable-coefficient KdV equation
    Theoretical Physics Group, Faculty of Science, Mansoura University, New Damietta 34517, Damietta, Egypt
    Nonlinear Anal Theory Methods Appl, 1600, 8 (2763-2770):