The Littlewood-Paley theory for multiple fourier series

被引:0
作者
Skriganov M.M.
机构
基金
以色列科学基金会; 俄罗斯基础研究基金会;
关键词
Fourier; Period Lattice; Fourier Series; Mutual Arrangement; Multiple Fourier Series;
D O I
10.1007/BF02358539
中图分类号
学科分类号
摘要
We study the Littlewood-Paley theory for multiple Fourier series with arbitrary period lattice. It is shown that the constants in the Littlewood-Paley inequality can be chosen to be independent of the mutual arrangement of the period lattice and the set of dyadic parallelepipeds. Bibliography: 6 titles. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:1021 / 1030
页数:9
相关论文
共 50 条
[41]   Strong spherical means of multiple Fourier series [J].
O. I. Kuznetsova .
Journal of Contemporary Mathematical Analysis, 2009, 44 :219-229
[42]   Littlewood-Paley-Rubio de Francia inequality for unbounded Vilenkin systems [J].
Tselishchev, Anton .
JOURNAL OF APPROXIMATION THEORY, 2024, 298
[43]   Expansion of the stratonovich multiple stochastic integrals based on the fourier multiple series [J].
Kuznetsov D.F. .
Journal of Mathematical Sciences, 2002, 109 (6) :2148-2165
[44]   On the generalized β-absolute convergence of single and multiple Fourier series [J].
Darji, Kiran N. .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2023, 27 (02) :171-184
[45]   Convergence in measure of logarithmic means of multiple Fourier series [J].
Goginava, U. ;
Gogoladze, L. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (02) :70-77
[46]   Convergence of multiple fourier series for functions of bounded variation [J].
S. A. Telyakovskii ;
V. N. Temlyakov .
Mathematical Notes, 1997, 61 :484-494
[47]   Convergence of multiple Fourier series for functions of bounded variation [J].
Telyakovskii, SA ;
Temlyakov, VN .
MATHEMATICAL NOTES, 1997, 61 (3-4) :484-494
[48]   Convergence in measure of logarithmic means of multiple Fourier series [J].
U. Goginava ;
L. Gogoladze .
Journal of Contemporary Mathematical Analysis, 2014, 49 :70-77
[49]   ESSENTIAL DIVERGENCE IN MEASURE OF MULTIPLE ORTHOGONAL FOURIER SERIES [J].
Getsadze, Rostom .
REAL ANALYSIS EXCHANGE, 2013, 39 (01) :91-100
[50]   A weak generalized localization of multiple Fourier series of continuous functions with a certain module of continuity [J].
Bloshanskii I.L. ;
Matseevich T.A. .
Journal of Mathematical Sciences, 2008, 155 (1) :31-46