The Littlewood-Paley theory for multiple fourier series

被引:0
作者
Skriganov M.M.
机构
基金
以色列科学基金会; 俄罗斯基础研究基金会;
关键词
Fourier; Period Lattice; Fourier Series; Mutual Arrangement; Multiple Fourier Series;
D O I
10.1007/BF02358539
中图分类号
学科分类号
摘要
We study the Littlewood-Paley theory for multiple Fourier series with arbitrary period lattice. It is shown that the constants in the Littlewood-Paley inequality can be chosen to be independent of the mutual arrangement of the period lattice and the set of dyadic parallelepipeds. Bibliography: 6 titles. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:1021 / 1030
页数:9
相关论文
共 50 条
[21]   Absolutely convergent Fourier series, classical function classes and Paley's theorem [J].
Moricz, Ferenc .
ANALYSIS MATHEMATICA, 2008, 34 (04) :261-276
[22]   The multipliers of multiple trigonometric Fourier series [J].
Ydyrys, Aizhan ;
Sarybekova, Lyazzat ;
Tleukhanova, Nazerke .
OPEN ENGINEERING, 2016, 6 (01) :367-371
[23]   On the absolute convergence of multiple fourier series [J].
Moricz, Ferenc ;
Veres, Antal .
ACTA MATHEMATICA HUNGARICA, 2007, 117 (03) :275-292
[24]   On summability theory and method of Fourier series [J].
He, JX .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 117 (2-3) :151-159
[25]   On the absolute convergence of multiple fourier series [J].
Ferenc Móricz ;
Antal Veres .
Acta Mathematica Hungarica, 2007, 117 :275-292
[26]   On absolute convergence of multiple fourier series [J].
Vyas, R. G. ;
Darji, K. N. .
MATHEMATICAL NOTES, 2013, 94 (1-2) :71-81
[27]   On absolute convergence of multiple fourier series [J].
R. G. Vyas ;
K. N. Darji .
Mathematical Notes, 2013, 94 :71-81
[28]   Convergence of Multiple Fourier Series of Functions of Bounded Generalized Variation [J].
U. Goginava ;
A. Sahakian .
Ukrainian Mathematical Journal, 2015, 67 :186-198
[29]   Convergence of Multiple Fourier Series of Functions of Bounded Generalized Variation [J].
Goginava, U. ;
Sahakian, A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (02) :186-198
[30]   Fourier series on fractals: A parallel with wavelet theory [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
RADON TRANSFORMS, GEOMETRY, AND WAVELETS, 2008, 464 :75-+