The Littlewood-Paley theory for multiple fourier series

被引:0
|
作者
Skriganov M.M.
机构
基金
以色列科学基金会; 俄罗斯基础研究基金会;
关键词
Fourier; Period Lattice; Fourier Series; Mutual Arrangement; Multiple Fourier Series;
D O I
10.1007/BF02358539
中图分类号
学科分类号
摘要
We study the Littlewood-Paley theory for multiple Fourier series with arbitrary period lattice. It is shown that the constants in the Littlewood-Paley inequality can be chosen to be independent of the mutual arrangement of the period lattice and the set of dyadic parallelepipeds. Bibliography: 6 titles. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:1021 / 1030
页数:9
相关论文
共 50 条
  • [1] Littlewood-Paley theory for Morrey spaces and their preduals
    Izumi, Takashi
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02): : 411 - 447
  • [2] A littlewood-paley inequality for the Carleson operator
    Elena Prestini
    Per Sjölin
    Journal of Fourier Analysis and Applications, 2000, 6 : 457 - 466
  • [3] A Littlewood-Paley inequality for the Carleson operator
    Prestini, E
    Sjölin, P
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (05) : 457 - 466
  • [4] LITTLEWOOD-PALEY THEOREM AND MULTIPLIERS ON THE QUANTUM TORUS
    陈泽乾
    尹智
    ActaMathematicaScientia, 2012, 32 (03) : 1255 - 1261
  • [5] LITTLEWOOD-PALEY THEOREM AND MULTIPLIERS ON THE QUANTUM TORUS
    Chen Zeqian
    Yin Zhi
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1255 - 1261
  • [6] Littlewood-Paley theorem for arbitrary intervals: Weighted estimates
    Kislyakov S.V.
    Journal of Mathematical Sciences, 2009, 156 (5) : 824 - 833
  • [7] Upper and lower bounds for Littlewood-Paley square functions in the Dunkl setting
    DziubaNski, Jacek
    Hejna, Agnieszka
    STUDIA MATHEMATICA, 2022, 262 (03) : 275 - 303
  • [8] Generalized Homogeneous Littlewood-Paley g-Function on Some Function Spaces
    Lu, Guanghui
    Tao, Shuangping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 17 - 34
  • [9] The Hardy–Littlewood theorem for multiple fourier series with monotone coefficients
    M. I. D’yachenko
    E. D. Nursultanov
    M. E. Nursultanov
    Mathematical Notes, 2016, 99 : 503 - 510
  • [10] The Hardy-Littlewood theorem for multiple fourier series with monotone coefficients
    D'yachenko, M. I.
    Nursultanov, E. D.
    Nursultanov, M. E.
    MATHEMATICAL NOTES, 2016, 99 (3-4) : 503 - 510