A posteriori error analysis of a momentum and thermal energy conservative mixed FEM for the Boussinesq equations

被引:0
作者
Sergio Caucao
Ricardo Oyarzúa
Segundo Villa-Fuentes
机构
[1] Universidad Católica de la Santísima Concepción,Departamento de Matemática y Física Aplicadas
[2] Universidad del Bío-Bío,GIMNAP
[3] Universidad de Concepción,Departamento de Matemática
[4] Universidad del Bío-Bío,CI2MA
来源
Calcolo | 2022年 / 59卷
关键词
Stationary Boussinesq equations; Mixed finite element method; Conservation of momentum; Conservation of thermal energy; Banach spaces; Raviart–Thomas elements; A posteriori error estimator; Reliability; Local efficiency; 65N30; 65N12; 65N15; 35Q79; 80A20; 76R05; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we complement the study of a new mixed finite element scheme, allowing conservation of momentum and thermal energy, for the Boussinesq model describing natural convection and derive a reliable and efficient residual-based a posteriori error estimator for the corresponding Galerkin scheme in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such as local estimates, suitable Helmholtz decompositions and the local approximation properties of the Clément and Raviart–Thomas operators, we derive the aforementioned a posteriori error estimator on arbitrary (convex or non-convex) polygonal and polyhedral regions. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are employed to prove the local efficiency of the proposed a posteriori error estimator. Finally, to illustrate the performance of the adaptive algorithm based on the proposed a posteriori error indicator and to corroborate the theoretical results, we provide some numerical examples.
引用
收藏
相关论文
共 76 条
  • [1] Allali MK(2005)A priori and a posteriori error estimates for Boussinesq equations Int. J. Numer. Anal. Model. 2 179-196
  • [2] Allendes A(2018)A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem Comput. Methods Appl. Mech. Eng. 340 90-120
  • [3] Barrenechea GR(2020)Stabilized finite element approximations for a generalized Boussinesq problem: a posteriori error analysis Comput. Methods Appl. Mech. Eng. 361 25-213
  • [4] Naranjo C(2020)A fully-mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent parameters Comput. Methods Appl. Math. 20 187-917
  • [5] Allendes A(2019)A posteriori error analysis of a mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity J. Sci. Comput. 78 887-1816
  • [6] Naranjo C(2016)A posteriori error analysis for a viscous flow-transport problem ESAIM Math. Model. Numer. Anal. 50 1789-2923
  • [7] Otárola E(2021)Analysis of a momentum conservative mixed-FEM for the stationary Navier–Stokes problem Numer. Methods Partial Differ. Equ. 37 2895-158
  • [8] Almonacid JA(2022)A posteriori error analysis of a momentum conservative mixed-FEM for the stationary Navier–Stokes problem Appl. Numer. Math. 176 134-476
  • [9] Gatica GN(1997)A posteriori error estimate for the mixed finite element method Math. Comp. 66 465-983
  • [10] Almonacid J(2016)A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density IMA J. Numer. Anal. 36 947-84