On a class of immersions of spheres into space forms of nonpositive curvature

被引:0
作者
Pedro Zühlke
机构
[1] Universidade de Brasília (UNB),Departamento de Matemática
[2] Campus Darcy Ribeiro,undefined
来源
Geometriae Dedicata | 2020年 / 205卷
关键词
h-principle; Hypersurfaces; Immersions; Infinite-dimensional manifolds; Principal curvatures; Rigidity; Sphere eversion; Primary: 58D10; 53C24; Secondary: 53C42; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M^{n+1} $$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n \ge 2 $$\end{document}) be a simply-connected space form of sectional curvature -κ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\kappa ^2 $$\end{document} for some κ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \kappa \ge 0 $$\end{document}, and I an interval not containing [-κ,κ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ [-\kappa ,\kappa ] $$\end{document} in its interior. It is known that the domain of a closed immersed hypersurface of M whose principal curvatures lie in I must be diffeomorphic to the n-sphere Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {S}^n $$\end{document}. These hypersurfaces are thus topologically rigid. The purpose of this paper is to show that they are also homotopically rigid. More precisely, for fixed I, the space F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F} $$\end{document} of all such hypersurfaces is either empty or weakly homotopy equivalent to the group of orientation-preserving diffeomorphisms of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {S}^n $$\end{document}. An equivalence assigns to each element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F} $$\end{document} a suitable modification of its Gauss map. For M not simply-connected, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F} $$\end{document} is the quotient of the corresponding space of hypersurfaces of the universal cover of M by a natural free proper action of the fundamental group of M.
引用
收藏
页码:95 / 112
页数:17
相关论文
共 40 条
[1]  
Alexander S(1977)Locally convex hypersurfaces of negatively curved spaces Proc. Am. Math. Soc. 64 321-325
[2]  
Bonini V(2015)Hypersurfaces in hyperbolic space with support function Adv. Math. 280 506-548
[3]  
Espinar JM(2010)The global structure of locally convex hypersurfaces in Finsler–Hadamard manifolds Mat. Zamet. 87 163-174
[4]  
Qing J(1970)La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie Inst. Hautes Études Sci. Publ. Math. 39 5-173
[5]  
Borisenko AA(1957)On the total curvature of immersed manifolds Am. J. Math. 79 306-318
[6]  
Olin EA(1989)On hypersurfaces of hyperbolic space infinitesimally supported by horospheres Trans. Am. Math. Soc. 313 419-431
[7]  
Cerf J(1970)Rigidity and convexity of hypersurfaces in spheres J. Differ. Geom. 4 133-144
[8]  
Chern S-S(2015)Some sharp estimates for convex hypersurfaces of pinched normal curvature Zh. Mat. Fiz. Anal. Geom. 11 111-122
[9]  
Lashof RK(1986)The hyperbolic Gauss map and quasiconformal reflections J. Reine Angew. Math. 372 96-135
[10]  
Currier RJ(1987)The asymptotic boundary of a surface imbedded in Mich. Math. J. 34 227-239