On Maximizing Sums of Non-monotone Submodular and Linear Functions

被引:0
作者
Benjamin Qi
机构
[1] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
来源
Algorithmica | 2024年 / 86卷
关键词
Submodular maximization; Regularization; Continuous greedy; Double greedy; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of Regularized Unconstrained SubmodularMaximization (RegularizedUSM) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function f:2N→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}_{\ge 0}$$\end{document} and a linear function ℓ:2N→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell :2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}$$\end{document} over the same ground set N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, output a set T⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\subseteq {\mathcal {N}}$$\end{document} approximately maximizing the sum f(T)+ℓ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)+\ell (T)$$\end{document}. An algorithm is said to provide an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation for RegularizedUSM if it outputs a set T such that E[f(T)+ℓ(T)]≥maxS⊆N[α·f(S)+β·ℓ(S)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[f(T)+\ell (T)]\ge \max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)]$$\end{document}. We also consider the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized ConstrainedSubmodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in Optimization 1–27, 2023), and that work constrains ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} to be non-positive. In this work, we provide improved (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation algorithms for both RegularizedUSM and RegularizedCSM with non-monotone f. Specifically, we are the first to provide nontrivial (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximations for RegularizedCSM where the sign of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is unconstrained, and the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} we obtain for RegularizedUSM improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all β∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,1)$$\end{document}. We also prove new inapproximability results for RegularizedUSM and RegularizedCSM, as well as 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).
引用
收藏
页码:1080 / 1134
页数:54
相关论文
共 33 条
[21]   Maximizing the Differences Between a Monotone DR-Submodular Function and a Linear Function on the Integer Lattice [J].
Zhang, Zhen-Ning ;
Du, Dong-Lei ;
Ma, Ran ;
Wu, Dan .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (03) :795-807
[22]   A new greedy strategy for maximizing monotone submodular function under a cardinality constraint [J].
Lu, Cheng ;
Yang, Wenguo ;
Gao, Suixiang .
JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (02) :235-247
[23]   A new greedy strategy for maximizing monotone submodular function under a cardinality constraint [J].
Cheng Lu ;
Wenguo Yang ;
Suixiang Gao .
Journal of Global Optimization, 2022, 83 :235-247
[24]   Approximation for maximizing monotone non-decreasing set functions with a greedy method [J].
Wang, Zengfu ;
Moran, Bill ;
Wang, Xuezhi ;
Pan, Quan .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) :29-43
[25]   MAXIMIZING NONMONOTONE SUBMODULAR FUNCTIONS UNDER MATROID OR KNAPSACK CONSTRAINTS [J].
Lee, Jon ;
Mirrokni, Vahab S. ;
Nagarajan, Viswanath ;
Sviridenko, Maxim .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 23 (04) :2053-2078
[26]   Preconditioning non-monotone gradient methods for retrieval of seismic reflection signals [J].
Y. F. Wang .
Advances in Computational Mathematics, 2012, 36 :353-376
[27]   Solitary wave solutions with non-monotone shapes for the modified Kawahara equation [J].
Marinov, Tchavdar T. ;
Marinova, Rossitza S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 :561-570
[28]   Preconditioning non-monotone gradient methods for retrieval of seismic reflection signals [J].
Wang, Y. F. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) :353-376
[29]   Maximizing the Sum of a Supermodular Function and a Monotone DR-submodular Function Subject to a Knapsack Constraint on the Integer Lattice [J].
Tan, Jingjing ;
Xu, Yicheng ;
Zhang, Dongmei ;
Zhang, Xiaoqing .
COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 :68-75
[30]   Regularization of ill-posed mixed variational inequalities with non-monotone perturbations [J].
Nguyen TT Thuy .
Journal of Inequalities and Applications, 2011