Lyapunov-type Inequalities for Differential Equations

被引:0
作者
Antonio Cañada
Juan A. Montero
Salvador Villegas
机构
[1] University of Granada,Department of Mathematical Analysis
来源
Mediterranean Journal of Mathematics | 2006年 / 3卷
关键词
Primary 34B05; Secondary 35J25; Linear boundary problem; Lyapunov inequality; ordinary differential equation; partial differential equation; resonant problem;
D O I
暂无
中图分类号
学科分类号
摘要
Let us consider the linear boundary value problem (0.1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u^{\prime\prime}(x) + a(x)u(x) = 0,\ x \in (0,L),\ u^{\prime}(0) = u^{\prime}(L) = 0, $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \Lambda _0$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_0$$\end{document} is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Lambda_0 = \{a\in L^\infty (0,L)\backslash \{0\}:\int\nolimits_0^L a(x)dx \geq 0,\ \hbox{(0.1) has nontrivial solutions\}.} $$\end{document} Classical Lyapunov inequality states that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int\nolimits_0^L a^+(x)dx>4/L$$\end{document} for any function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \Lambda _0$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a^ +(x) = \max \{a(x),0\}.$$\end{document}The constant 4/L is optimal. Let us note that Lyapunov inequality is given in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert\vert a^+\vert\vert_1,$\end{document} the usual norm in the space L1(0, L). In this paper we review some recent results on Lp Lyapunovtype inequalities, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p \leq +\infty,$$\end{document}, for ordinary and partial differential equations on a bounded and regular domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^N.$$\end{document} In the last case, it is showed that the relation between the quantities p and N/2 plays a crucial role, pointing out a deep difference with respect to the ordinary case. In the proof, the best constants are obtained by using a related variational problem and Lagrange multiplier theorem. Finally, the linear results are combined with Schauder fixed point theorem in the study of resonant nonlinear problems.
引用
收藏
页码:177 / 187
页数:10
相关论文
empty
未找到相关数据