5d and 4d SCFTs: canonical singularities, trinions and S-dualities

被引:0
作者
Cyril Closset
Simone Giacomelli
Sakura Schäfer-Nameki
Yi-Nan Wang
机构
[1] University of Oxford,Mathematical Institute
[2] University of Birmingham,School of Mathematics
来源
Journal of High Energy Physics | / 2021卷
关键词
Field Theories in Higher Dimensions; String Duality; Supersymmetric Gauge Theory; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs that we call Dpb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D}_p^b $$\end{document}(G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} realization. We also discover new S-dualities between different Dpb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {D}_p^b $$\end{document}(G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.
引用
收藏
相关论文
共 235 条
[1]  
Witten E(1996) SU(5) Nucl. Phys. B 471 195-undefined
[2]  
Morrison DR(1997)6 Nucl. Phys. B 483 229-undefined
[3]  
Seiberg N(1997) 5 Nucl. Phys. B 497 155-undefined
[4]  
Douglas MR(1997) = 1 Nucl. Phys. B 497 56-undefined
[5]  
Katz SH(2013) 5 JHEP 10 046-undefined
[6]  
Vafa C(2014) 5 JHEP 05 048-undefined
[7]  
Intriligator KA(2017) 6 JHEP 09 147-undefined
[8]  
Morrison DR(2017) 5 JHEP 06 134-undefined
[9]  
Seiberg N(2018)5 JHEP 04 103-undefined
[10]  
Hayashi H(2019) 5 JHEP 10 282-undefined