共 15 条
- [1] A mass formula for negacyclic codes of length 2k and some good negacyclic codes over ℤ4+uℤ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{4}+u\mathbb {Z}_{4}$\end{document} Cryptography and Communications, 2017, 9 (2) : 241 - 272
- [2] Some results on F4[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_4[v]$$\end{document}-double cyclic codes Computational and Applied Mathematics, 2021, 40 (2)
- [3] Quantum Codes from Repeated-Root Cyclic and Negacyclic Codes of Length 4ps Over 𝔽pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p^{m}}$\end{document} International Journal of Theoretical Physics, 2021, 60 (4) : 1299 - 1327
- [4] Generators of negacyclic codes over Fp[u,v]/⟨u2,v2,uv,vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p}[u,v]/\langle u^2,v^2,uv,vu\rangle $$\end{document} of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} Computational and Applied Mathematics, 2024, 43 (5)
- [5] Mass formula and structure of self-dual codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf Z}_{2^s}}$$\end{document} Designs, Codes and Cryptography, 2013, 67 (3) : 293 - 316
- [6] Universal forms over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Q}(\sqrt{5})$\end{document} The Ramanujan Journal, 2008, 16 (1)
- [7] (1−2u3)-constacyclic codes and quadratic residue codes over Fp[u]/〈u4−u〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}[u]/\langle u^{4}-u\rangle $\end{document} Cryptography and Communications, 2017, 9 (4) : 459 - 473
- [8] The number of self-dual codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z_{p^3}}$$\end{document} Designs, Codes and Cryptography, 2009, 50 (3) : 291 - 303
- [9] Classification of self-dual cyclic codes over the chain ring Zp[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_p[u]/\langle u^3 \rangle $$\end{document} Designs, Codes and Cryptography, 2020, 88 : 2247 - 2273
- [10] A class of constacyclic codes over Fpm[u]/u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{p^m}[u]/\left\langle u^2\right\rangle$$\end{document} Indian Journal of Pure and Applied Mathematics, 2022, 53 (2) : 355 - 371