Inclusive and differential cross section measurements of tt¯bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$\end{document} production in the lepton+jets channel at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV

被引:0
作者
A. Hayrapetyan [85 ]
A. Tumasyan [88 ]
W. Adam [277 ]
J. W. Andrejkovic [1 ]
T. Bergauer [1 ]
S. Chatterjee [206 ]
K. Damanakis [2 ]
M. Dragicevic [2 ]
A. Escalante Del Valle [2 ]
P. S. Hussain [2 ]
M. Jeitler [2 ]
N. Krammer [2 ]
D. Liko [2 ]
I. Mikulec [2 ]
J. Schieck [2 ]
R. Schöfbeck [207 ]
D. Schwarz [2 ]
M. Sonawane [2 ]
S. Templ [2 ]
W. Waltenberger [2 ]
C.-E. Wulz [207 ]
M. R. Darwish [2 ]
T. Janssen [2 ]
P. Van Mechelen [2 ]
E. S. Bols [2 ]
J. D’Hondt [2 ]
S. Dansana [2 ]
A. De Moor [207 ]
M. Delcourt [3 ]
H. El Faham [208 ]
S. Lowette [3 ]
I. Makarenko [3 ]
A. Morton [4 ]
D. Müller [4 ]
A. R. Sahasransu [4 ]
S. Tavernier [4 ]
M. Tytgat [4 ]
S. Van Putte [4 ]
D. Vannerom [4 ]
B. Clerbaux [4 ]
G. De Lentdecker [4 ]
L. Favart [4 ]
D. Hohov [4 ]
J. Jaramillo [4 ]
A. Khalilzadeh [4 ]
K. Lee [6 ]
M. Mahdavikhorrami [4 ]
A. Malara [4 ]
S. Paredes [5 ]
L. Pétré [5 ]
机构
[1] Yerevan Physics Institute,Universidade Estadual Paulista
[2] Institut für Hochenergiephysik,Institute for Nuclear Research and Nuclear Energy
[3] Universiteit Antwerpen,Instituto De Alta Investigación
[4] Vrije Universiteit Brussel,Department of Physics
[5] Université Libre de Bruxelles,State Key Laboratory of Nuclear Physics and Technology
[6] Ghent University,University of Split, Faculty of Electrical Engineering
[7] Université Catholique de Louvain,Center for High Energy Physics (CHEP
[8] Centro Brasileiro de Pesquisas Fisicas,FU)
[9] Universidade do Estado do Rio de Janeiro,Department of Physics
[10] Universidade Federal do ABC,MTA
[11] Bulgarian Academy of Sciences,ELTE Lendület CMS Particle and Nuclear Physics Group
[12] University of Sofia,Institute of Physics
[13] Universidad de Tarapacá,College of Engineering and Technology
[14] Beihang University,National Centre for Particle Physics
[15] Tsinghua University,National Centre for Physics
[16] Institute of High Energy Physics,Institute of Experimental Physics, Faculty of Physics
[17] Peking University,Faculty of Physics
[18] Sun Yat-Sen University,VINCA Institute of Nuclear Sciences
[19] University of Science and Technology of China,Universidad de Oviedo
[20] Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) — Fudan University,Instituto de Física de Cantabria (IFCA)
[21] Zhejiang University,High Energy Physics Research Unit, Department of Physics, Faculty of Science
[22] Universidad de Los Andes,Institute of Basic and Applied Sciences, Faculty of Engineering
[23] Universidad de Antioquia,Physics Department, Faculty of Science
[24] Mechanical Engineering and Naval Architecture,Faculty of Informatics
[25] University of Split,Department of Physics
[26] Faculty of Science,Scuola Superiore Meridionale
[27] Institute Rudjer Boskovic,Department of Applied Physics, Faculty of Science and Technology
[28] University of Cyprus,Trincomalee Campus
[29] Charles University,INFN Sezione di Pavia
[30] Escuela Politecnica Nacional,School of Physics and Astronomy
[31] Universidad San Francisco de Quito,undefined
[32] Academy of Scientific Research and Technology of the Arab Republic of Egypt,undefined
[33] Egyptian Network of High Energy Physics,undefined
[34] Fayoum University,undefined
[35] National Institute of Chemical Physics and Biophysics,undefined
[36] University of Helsinki,undefined
[37] Helsinki Institute of Physics,undefined
[38] Lappeenranta-Lahti University of Technology,undefined
[39] IRFU,undefined
[40] CEA,undefined
[41] Université Paris-Saclay,undefined
[42] Laboratoire Leprince-Ringuet,undefined
[43] CNRS/IN2P3,undefined
[44] Ecole Polytechnique,undefined
[45] Institut Polytechnique de Paris,undefined
[46] Université de Strasbourg,undefined
[47] CNRS,undefined
[48] IPHC UMR 7178,undefined
[49] Institut de Physique des 2 Infinis de Lyon (IP2I),undefined
[50] Georgian Technical University,undefined
关键词
B Physics; Hadron-Hadron Scattering; Top Physics;
D O I
10.1007/JHEP05(2024)042
中图分类号
学科分类号
摘要
Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs, tt¯bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$\end{document}, are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the tt¯bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$\end{document} process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale, μR=12∏i=t,t¯,b,b¯mT,i1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mu}_{\textrm{R}}=\frac{1}{2}{\prod}_{i=\textrm{t},\overline{\textrm{t}},\textrm{b},\overline{\textrm{b}}}{m}_{\textrm{T},i}^{1/4} $$\end{document}, where mT,i2=mi2+pT,i2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_{\textrm{T},i}^2={m}_i^2+{p}_{\textrm{T},i}^2 $$\end{document} are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.
引用
收藏
相关论文
共 45 条
  • [1] Höche S(2015) 8.2 Phys. Lett. B 748 74-undefined
  • [2] Höche S(2017) 2 Eur. Phys. J. C 77 145-undefined
  • [3] Alwall J(2014) 1.1 JHEP 07 079-undefined
  • [4] Frederix R(2012)undefined JHEP 12 061-undefined
  • [5] Frixione S(2007)undefined JHEP 09 126-undefined
  • [6] Frixione S(2015)undefined Comput. Phys. Commun. 191 159-undefined
  • [7] Nason P(2015)undefined JHEP 12 065-undefined
  • [8] Ridolfi G(2019)undefined Eur. Phys. J. C 79 866-undefined
  • [9] Sjöstrand T(2008)undefined Eur. Phys. J. C 58 639-undefined
  • [10] Ježo T(2009)undefined JHEP 02 007-undefined