Zeta-functions of curves of genus 3 over finite fields

被引:0
|
作者
Fei Yu
Hong Xi Tong
机构
[1] Science and Technology on Communication Security Laboratory,Department of Mathematics
[2] Shanghai University,undefined
来源
Acta Mathematica Sinica, English Series | 2010年 / 26卷
关键词
Elliptic curves; zeta-functions; Jacobian varieties; maximum curves; 11G20; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we determine zeta-functions of some curves of genus 3 over finite fields by gluing three elliptic curves based on Xing’s research, and the examples show that there exists a maximal curve of genus 3 over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{F}_{49} $$\end{document}.
引用
收藏
页码:2223 / 2230
页数:7
相关论文
共 50 条
  • [31] Quantum computation of zeta functions of curves
    Kedlaya, KS
    COMPUTATIONAL COMPLEXITY, 2006, 15 (01) : 1 - 19
  • [32] Quantum computation of zeta functions of curves
    Kiran S. Kedlaya
    computational complexity, 2006, 15 : 1 - 19
  • [33] A family of algebraic curves and Appell series over finite fields
    Azharuddin, Shaik
    Kalita, Gautam
    RAMANUJAN JOURNAL, 2024, 64 (03) : 823 - 834
  • [34] On Poincar, series of singularities of algebraic curves over finite fields
    Mira, Jhon Jader
    Stoehr, Karl-Otto
    MANUSCRIPTA MATHEMATICA, 2015, 147 (3-4) : 527 - 546
  • [35] Elliptic curves over finite fields with Fibonacci numbers of points
    Bilu, Yuri
    Gomez, Carlos A.
    Gomez, Jhonny C.
    Luca, Florian
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 711 - 734
  • [36] Constructions of LDPCs From Elliptic Curves Over Finite Fields
    Saouter, Yannick
    IEEE COMMUNICATIONS LETTERS, 2017, 21 (12) : 2558 - 2561
  • [37] Elliptic curves with a given number of points over finite fields
    David, Chantal
    Smith, Ethan
    COMPOSITIO MATHEMATICA, 2013, 149 (02) : 175 - 203
  • [38] On generalized Eisenstein series and Ramanujan's formula for periodic zeta-functions
    Dagli, M. Cihat
    Can, Mumun
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (01): : 77 - 103
  • [39] On generalized Eisenstein series and Ramanujan’s formula for periodic zeta-functions
    M. Cihat Dağlı
    Mümün Can
    Monatshefte für Mathematik, 2017, 184 : 77 - 103
  • [40] Evaluation of Certain Hypergeometric Functions over Finite Fields
    Tu, Fang-Ting
    Yang, Yifan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14