Periodic and subharmonic solutions for a class of the second-order Hamiltonian systems with impulsive effects

被引:0
作者
Jingli Xie
Jianli Li
Zhiguo Luo
机构
[1] Jishou University,College of Mathematics and Statistics
[2] Hunan Normal University,Department of Mathematics
来源
Boundary Value Problems | / 2015卷
关键词
critical point theorem; impulsive differential equations; periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the existence of periodic and subharmonic solutions for a class of the second-order impulsive Hamiltonian systems. It employs the linking theorem.
引用
收藏
相关论文
共 50 条
[1]  
Jing Q(2007)Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems J. Math. Anal. Appl. 328 380-389
[2]  
Tang CL(2005)Subharmonic solutions for nonautonomous sublinear second-order Hamiltonian systems J. Math. Anal. Appl. 304 383-393
[3]  
Tang CL(1994)Periodic and subharmonic solutions for a class of second-order Hamiltonian systems Dyn. Syst. Appl. 3 519-536
[4]  
Wu XP(2000)Subharmonic solutions to second-order equations with periodic nonlinearities Nonlinear Anal. 41 649-667
[5]  
Avila AI(1978)Periodic solutions of Hamiltonian systems Commun. Pure Appl. Math. 31 157-184
[6]  
Felmer PL(2007)Some existence results on periodic solutions of ordinary J. Math. Anal. Appl. 333 1228-1236
[7]  
Serra E(1999)-Laplacian systems J. Math. Anal. Appl. 238 216-233
[8]  
Tarallo M(2002)Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems Electron. J. Differ. Equ. 2002 435-445
[9]  
Terracini S(2004)On periodic solutions of superquadratic Hamiltonian systems J. Math. Anal. Appl. 293 433-439
[10]  
Rabinowitz PH(2005)Periodic and subharmonic solutions of second-order Hamiltonian systems Appl. Math. Comput. 161 726-741